hdu 1081 To The Max(二维压缩的最大连续序列)(最大矩阵和)
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
8 0 -2
题意:求n*n的矩阵里和最大的子矩阵。
最大连续序列和找最大和矩阵有着共通点,这里需要把一维的转化为二维的是关键
我们可以假定把每一行看作单个的元素,知道每个元素的值,那我们就能够将n列,看作有n个这样的压缩元素,那我们就是在这n个元素中找最大值
(当然压缩列也是可以的,这里我的代码写的是压缩行)
那么我们转化成用二维的sum[i][j]来维护前缀和,表示第i行前j个数的和
#include <cstdio>
#include <map>
#include <iostream>
#include<cstring>
#include<bits/stdc++.h>
#define ll long long int
#define M 6
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int n;
int sum[][];
int dp[];
int main(){
ios::sync_with_stdio(false);
while(cin>>n){
memset(sum,,sizeof(sum));
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
int t; cin>>t;
sum[i][j]=sum[i][j-]+t; //前缀和
}
int ans=-inf;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++){ //二重循环枚举 把j~i压缩成一个点
int s=-inf;
memset(dp,,sizeof(dp));
for(int k=;k<=n;k++){ //找最大连续序列
dp[k]=max(dp[k-]+sum[k][i]-sum[k][j-],sum[k][i]-sum[k][j-]);
s=max(s,dp[k]);
}
ans=max(s,ans);
}
cout<<ans<<endl;
}
}
hdu 1081 To The Max(二维压缩的最大连续序列)(最大矩阵和)的更多相关文章
- lintcode 最长上升连续子序列 II(二维最长上升连续序列)
题目链接:http://www.lintcode.com/zh-cn/problem/longest-increasing-continuous-subsequence-ii/ 最长上升连续子序列 I ...
- HDU 1081 To The Max【dp,思维】
HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...
- hdu1081 DP类最大子段和(二维压缩+前缀和数组/树状数组计数)
题意:给出一个 n * n 的数字矩阵,问最大子矩阵和是多少. 由于和最长子段和问题类似,一开始想到的就是 DP ,一开始我准备用两个循环进行 DP ,对于每一个 (i,j) ,考察(i - 1,j) ...
- 【C语言】二维数组中的查找,杨氏矩阵
//二维数组中的查找,杨氏矩阵 //在一个二维数组中,每行都依照从左到右的递增的顺序排序.每列都依照从上到下递增的顺序排序. //请完毕一个函数.输入这种一个数组和一个数,推断数组中是否包括这个数. ...
- 【c语言】二维数组中的查找,杨氏矩阵在一个二维数组中,每行都依照从左到右的递增的顺序排序,输入这种一个数组和一个数,推断数组中是否包括这个数
// 二维数组中的查找,杨氏矩阵在一个二维数组中.每行都依照从左到右的递增的顺序排序. // 每列都依照从上到下递增的顺序排序.请完毕一个函数,输入这种一个数组和一个数.推断数组中是否包括这个数 #i ...
- hdu 1081 To The Max(dp+化二维为一维)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...
- Hdu 1081 To The Max
To The Max Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- Poj1050_To the Max(二维数组最大字段和)
一.Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is an ...
- HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)
Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...
随机推荐
- WSL Windows subsytem linux 的简单学习与使用
1. win10 1709 以上的版本应该都增加上了 ctrl +r 运行 winver 查看版本 2. 添加删除程序 增加 wsl 增加一个功能 3. 打开cmd 输入 bash 即可 4. 可以将 ...
- 版本控制--git+idea
- Java——scoket通讯
Socket 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket. Socket是TCP/IP协议通信的抽象层,所以我们还需要了解TCP协议 传输层协议 TCP: ...
- sed 双引号 单引号的区别
a="abcd" b="abc" sed -i '/$a/ s/$/$b/' test.a 我想在test.a中匹配以”abcd“开头的行,然后在行尾加入”ab ...
- Yii2框架GridView自带导出功能最佳实践
1. 导出excel的实现方法 (1)使用phpexcel封装工具类导出excel (2)使用爬虫爬取页面再处理封装工具类导出excel (3)使用页面渲染后处理html添加头部信息生成excel文件 ...
- 解决 Redis 只读不可写的问题
本文转载:https://blog.csdn.net/han_cui/article/details/54767208?tdsourcetag=s_pcqq_aiomsg 解决 Redis 只读不可写 ...
- MySQL——安装、配置、启动服务、
1.环境变量配置 将启动连接,加入环境变量中. mysqld :启动服务端 msysql -u 用户名 -p 密码 : 启动客户端 2.windows服务:一直在运行中 E:\wupeiqi\mys ...
- DotNetty 实现 Modbus TCP 系列 (一) 报文类
本文已收录至:开源 DotNetty 实现的 Modbus TCP/IP 协议 Modbus TCP/IP 报文 报文最大长度为 260 byte (ADU = 7 byte MBAP Header ...
- linux环境 :LIBRARY_PATH, LD_LIBRARY_PATH区别
参考: https://www.cnblogs.com/mylinux/p/4955448.html LIBRARY_PATH和LD_LIBRARY_PATH是Linux下的两个环境变量,二者的含义和 ...
- poj-1724(bfs+优先队列)
题意:有向图,给你m条边,每条边有两个权值,路径长和通过这条路径的花费,问你在不超过k花费的前提下,最短的路径从1走到n 解题思路:因为边数很少,我们可以直接用暴力每条边的方式来找最小的路径长,也就是 ...