3566: [SHOI2014]概率充电器

Time Limit: 40 Sec  Memory Limit: 256 MB
Submit: 1888  Solved: 857
[Submit][Status][Discuss]

Description

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!

SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?

Input

第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。

Output

输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数

 
题意:给你一颗树,每个点有一定的概率被直接导通,每条边也有一定概率导通,每个点可以通过相连的边在另一个点导通情况下以一定概率导通。求整棵树导通点个数的期望。
题解:首先期望这里等于每个点导通概率和。由于导通情况很多,正着计算非常困难,所以不妨正难则反,考虑每个点无法导通的情况。显然,因为是一棵树,根据大部分树形dp的套路,稍加思索发现这里存在父亲向儿子的转移,也存在儿子向父亲的转移。
定义f[i]表示i这个点由儿子无法转移的概率。显然有:f[i]=(1-p[i])*Π(f[v]+(1-f[v])*(1-val[i]));
把累乘里的东西定义为h[i]。
这题难点主要是父亲向儿子的转移。定义g[i]为i的父亲无法向i转移的概率。
tmp=g[fa[i]]∗f[fa[i]]/h[i];
然后g[i]=tmp+(1-tmp)*(1-val[i]);//这里val[i]是i的父亲到i的那条边,意会一下。
为什么tmp是这样的呢,画个图就很明白了。
因为这里g[i]可能是父亲链上转移过来的,也可能是从i的兄弟通过父亲转移过来,所以真正这个转移时我们的目标是对着这条边。所以把f[fa[i]]/h[i]就是除h[i]之外的所有兄弟使得fa[i]不能点亮的概率,再乘以g[fa[i]]就是不从父亲链也不从兄弟转移过来的概率,然后g[i]的计算就变得显然了。

#include<bits/stdc++.h>
#define ll long long
#define pb push_back
#define _mp make_pair
#define db double
#define eps 1e-9
using namespace std;
const int maxn=5e5+100;
const int inf=1e6;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int cnt,tot;
int n,m;
int fir[maxn],nxt[maxn*2],to[maxn*2];
db val[maxn*2],f[maxn],g[maxn],h[maxn],p[maxn];
void add_e(int x,int y,db k)
{
++cnt;nxt[cnt]=fir[x];fir[x]=cnt;to[cnt]=y;val[cnt]=k;
}
void dfs1(int x,int fa)
{
f[x]=p[x];
for(int i=fir[x];i;i=nxt[i])
{
int v=to[i];
if(v==fa)continue;
dfs1(v,x);
h[v]=(1.0-f[v])*(1-val[i])+f[v];
f[x]*=h[v];
}
}
void dfs2(int x,int fa)
{
db sum=p[x];int sz=0;
for(int i=fir[x];i;i=nxt[i])
{
int v=to[i];
if(v==fa)continue;
if(h[v]>eps)
{
sum*=h[v];
}
else sz++;
}
for(int i=fir[x];i;i=nxt[i])
{
int v=to[i];
if(v==fa)continue;
db tmp;
if(h[v]>eps)
{
tmp=(sz?0:sum/h[v]*g[x]);
}
else tmp=(sz>1?0:sum*g[x]);
g[v]=tmp+(1.0-tmp)*(1-val[i]);
dfs2(v,x);
}
}
int main()
{
cnt=0;
n=read();
int u,v,w;
for(int i=1;i<n;i++)
{
u=read();v=read();w=read();
db kk=1.0*w/100.0;
add_e(u,v,kk);
add_e(v,u,kk);
}
for(int i=1;i<=n;i++)
{
w=read();
p[i]=1.0-1.0*w/100;
}
dfs1(1,0);g[1]=1.0;dfs2(1,0);
db ans=0;
for(int i=1;i<=n;i++)
{
ans+=1.0-f[i]*g[i];
}
printf("%.6f\n",ans);
}

  

BZOJ3566: [SHOI2014]概率充电器 树形+概率dp的更多相关文章

  1. 【bzoj3566】[SHOI2014]概率充电器 树形概率dp

    题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的 ...

  2. BZOJ 3566 概率充电器(树形概率DP)

    题面 题目传送门 分析 定义f(i)f(i)f(i)为iii点不被点亮的概率,p(i)p(i)p(i)为iii自己被点亮的概率,p(i,j)p(i,j)p(i,j)表示i−ji-ji−j 这条边联通的 ...

  3. BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP

    BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技 ...

  4. BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  5. BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...

  6. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  7. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  8. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  9. BZOJ3566 SHOI2014 概率充电器 【概率DP】

    BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...

随机推荐

  1. react-router的坑

    componentWillReceiveProps(nextProps){ 在改钩子函数里接受组件变化的最近的传递的props 如果在这里没有使用nextprops 而是调用this.props 会出 ...

  2. array_column函数

    <?php $arr = [ [ 'id'=>1, 'name'=>'wang', 'age'=>10 ], [ 'id'=>2, 'name'=>'yong', ...

  3. Oracle Flashback 详解

    Oracle flashback 是一种方便快捷的数据库恢复技术,它不使用备份文件,通过闪回日志可以使数据库恢复到过去的某个状态,当用户发生逻辑错误时(误删表数据.表.表空间等)需要快速恢复数据库,可 ...

  4. [转帖]Linux的标准输入 标准输出和错误输出

    Linux标准输入.输出和错误和文件重定向 专题 https://www.cnblogs.com/softidea/p/3965093.html 感觉自己对 这一块的理解一直不好 昨天同事给了一个 b ...

  5. AngularJS 中的 factory、 service 和 provider区别,简单易懂

    转自:http://blog.csdn.net/ywl570717586/article/details/51306176 初学 AngularJS 时, 肯定会对其提供 factory . serv ...

  6. RedHat Enterprise Linux 6.4使用yum安装出现This system is not registered to Red Hat Subscription Management

    我虚拟机安装的系统是RedHat Enterprise Linux 6.4-i686,是32位的.使用yum命令安装软件时候出现以下错误: This system is not registered ...

  7. 牛客练习赛13F m皇后

    题目链接:https://ac.nowcoder.com/acm/contest/70/F 题目大意: 略 分析: 可以分成四步计算冲突:水平方向,垂直方向,左斜线方向,右斜线方向.只要会处理水平方向 ...

  8. 连接mysql 出现 1005 error(150) , error(121)的错误

    1.显示不能创建表 出现150错误 将检查是因为 我的user 表示拷贝过来的所以它设置的编码格式是utf-8 而我又新创建的表没有添加编码格式,所以它认为这两个关联的表之间的编码格式不匹配. 2.出 ...

  9. Centos6.8 安装nginx

    1.安装相关依赖 (1)yum install gcc 备注:可以通过gcc -v 查看版本信息,来确定是否安装过. (2)yum install pcre-devel (3)yum install ...

  10. CDH 6.0.1 集群搭建 「Before install」

    从这一篇文章开始会有三篇文章依次介绍集群搭建 「Before install」 「Process」 「After install」 继上一篇使用 docker 部署单机 CDH 的文章,当我们使用 d ...