BZOJ3566: [SHOI2014]概率充电器 树形+概率dp
3566: [SHOI2014]概率充电器
Time Limit: 40 Sec Memory Limit: 256 MB
Submit: 1888 Solved: 857
[Submit][Status][Discuss]
Description
著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!
”
SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?
Input
第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。
Output
输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数
#include<bits/stdc++.h>
#define ll long long
#define pb push_back
#define _mp make_pair
#define db double
#define eps 1e-9
using namespace std;
const int maxn=5e5+100;
const int inf=1e6;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int cnt,tot;
int n,m;
int fir[maxn],nxt[maxn*2],to[maxn*2];
db val[maxn*2],f[maxn],g[maxn],h[maxn],p[maxn];
void add_e(int x,int y,db k)
{
++cnt;nxt[cnt]=fir[x];fir[x]=cnt;to[cnt]=y;val[cnt]=k;
}
void dfs1(int x,int fa)
{
f[x]=p[x];
for(int i=fir[x];i;i=nxt[i])
{
int v=to[i];
if(v==fa)continue;
dfs1(v,x);
h[v]=(1.0-f[v])*(1-val[i])+f[v];
f[x]*=h[v];
}
}
void dfs2(int x,int fa)
{
db sum=p[x];int sz=0;
for(int i=fir[x];i;i=nxt[i])
{
int v=to[i];
if(v==fa)continue;
if(h[v]>eps)
{
sum*=h[v];
}
else sz++;
}
for(int i=fir[x];i;i=nxt[i])
{
int v=to[i];
if(v==fa)continue;
db tmp;
if(h[v]>eps)
{
tmp=(sz?0:sum/h[v]*g[x]);
}
else tmp=(sz>1?0:sum*g[x]);
g[v]=tmp+(1.0-tmp)*(1-val[i]);
dfs2(v,x);
}
}
int main()
{
cnt=0;
n=read();
int u,v,w;
for(int i=1;i<n;i++)
{
u=read();v=read();w=read();
db kk=1.0*w/100.0;
add_e(u,v,kk);
add_e(v,u,kk);
}
for(int i=1;i<=n;i++)
{
w=read();
p[i]=1.0-1.0*w/100;
}
dfs1(1,0);g[1]=1.0;dfs2(1,0);
db ans=0;
for(int i=1;i<=n;i++)
{
ans+=1.0-f[i]*g[i];
}
printf("%.6f\n",ans);
}
BZOJ3566: [SHOI2014]概率充电器 树形+概率dp的更多相关文章
- 【bzoj3566】[SHOI2014]概率充电器 树形概率dp
题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的 ...
- BZOJ 3566 概率充电器(树形概率DP)
题面 题目传送门 分析 定义f(i)f(i)f(i)为iii点不被点亮的概率,p(i)p(i)p(i)为iii自己被点亮的概率,p(i,j)p(i,j)p(i,j)表示i−ji-ji−j 这条边联通的 ...
- BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP
BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技 ...
- BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...
- BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)
Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...
- BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]
3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...
- 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...
- BZOJ 3566: [SHOI2014]概率充电器( 树形dp )
通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...
- BZOJ3566 SHOI2014 概率充电器 【概率DP】
BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...
随机推荐
- vuex的购物车效果 index.js
import Vue from 'vue'; import Vuex, { Store } from 'vuex'; import { stat } from 'fs'; Vue.use(Vuex); ...
- [官网]Linux版本历史
This is a list of links to every changelog. https://kernelnewbies.org/LinuxVersions 总结一下 2.6.x 存在了八年 ...
- POJ1108_Split Windows 解题报告
Split Windows 题目链接:http://poj.org/problem?id=1108 题目大意: 给你一棵二叉树的先序遍历,有三种字符:|.-.A~Z,然后用窗口表示出来,|: 表示将当 ...
- CRM/PLM/SCM/MES与ERP的联系与区别
企业通过专设信息机构.信息主管,配备适应现代企业管理运营要求的自动化.智能化.高技术硬件.软件.设备.设施,建立包括网络.数据库和各类信息管理系统在内的工作平台,提高企业经营管理效率的发展模式. 那么 ...
- 优化CSS重排重绘与浏览器性能
关于CSS重排和重绘的概念,最近看到不少这方面的文章,觉得挺有用,在制作中考虑浏览器的性能,减少重排能够节省浏览器对其子元素及父类元素的重新渲染:避免过分的重绘也能节省浏览器性能:优化动画,使用3D启 ...
- 转《vue引入第三方js库》
一.绝对路径直接引入,全局可用 二.绝对路径直接引入,配置后,import 引入后再使用 三.webpack中配置 alias,import 引入后再使用 四.webpack 中配置 plugins, ...
- 关于IWMS中遇到的问题及解决方法
1.生成的文章上传到外网上,但是没一会儿又变成原来的样子? 解决方案:把上传页面对应的template中的.aspx页面也要上传到外网去.
- 常见IT工具软件总结
1. 阿里云在线迁移服务 2.智能媒体管理 格式转换 业务域名管理 1. 每个业务有一个英文单词, 1. 每个 git 的命名应该是 chgg-业务英文-种类 2. 例如 chgg-plant-api ...
- MyBatis SpringBoot 杂记
最近接了个xxx代码. 不能说人家不好, 因为必进年月久了.能用这么长时间, 不就说明还不错么?! 我们现在每天写的, 能超出人家的么~~~ 呵呵 Java项目中, 把动态数据源切换的框架整合进来. ...
- 四、Mysql主从同步
一.MySQL Replication介绍 MySQL Replication 官方文档 Replication可以实现将数据从一台数据库服务器(master)复制到一或多台数据库服务器(slave) ...