概述

LinkedHashMap 继承自 HashMap,在 HashMap 基础上,通过维护一条双向链表,解决了 HashMap 不能随时保持遍历顺序和插入顺序一致的问题。除此之外,LinkedHashMap 对访问顺序也提供了相关支持。

原理

LinkedHashMap在HashMap结构的基础上,增加了一条双向链表,使得上面的结构可以保持键值对的插入顺序。

上图中,淡蓝色的箭头表示前驱引用,红色箭头表示后继引用。每当有新键值对节点插入,新节点最终会接在 tail 引用指向的节点后面。而 tail 引用则会移动到新的节点上,这样一个双向链表就建立起来了。

Entry

在对核心内容展开分析之前,这里先插队分析一下键值对节点的继承体系。先来看看继承体系结构图:

LinkedHashMap 内部类 Entry 继承自 HashMap 内部类 Node,并新增了两个引用,分别是 before 和 after。这两个引用的用途不难理解,也就是用于维护双向链表。同时,TreeNode 继承 LinkedHashMap 的内部类 Entry 后,就具备了和其他 Entry 一起组成链表的能力。

主要方法

1、put()------LinkedHashMap的put()与HashMap保持一致,区别在于newNode()。

// HashMap 中实现
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
} // HashMap 中实现
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0) {...}
// 通过节点 hash 定位节点所在的桶位置,并检测桶中是否包含节点引用
if ((p = tab[i = (n - 1) & hash]) == null) {...}
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode) {...}
else {
// 遍历链表,并统计链表长度
for (int binCount = 0; ; ++binCount) {
// 未在单链表中找到要插入的节点,将新节点接在单链表的后面
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) {...}
break;
}
// 插入的节点已经存在于单链表中
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null) {...}
afterNodeAccess(e); // 回调方法,后续说明
return oldValue;
}
}
++modCount;
if (++size > threshold) {...}
afterNodeInsertion(evict); // 回调方法,后续说明
return null;
} // HashMap 中实现
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
return new Node<>(hash, key, value, next);
} // LinkedHashMap 中覆写
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
LinkedHashMap.Entry<K,V> p =
new LinkedHashMap.Entry<K,V>(hash, key, value, e);
// 将 Entry 接在双向链表的尾部
linkNodeLast(p);
return p;
} // LinkedHashMap 中实现
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
LinkedHashMap.Entry<K,V> last = tail;
tail = p;
// last 为 null,表明链表还未建立
if (last == null)
head = p;
else {
// 将新节点 p 接在链表尾部
p.before = last;
last.after = p;
}
}

2、remove()------LinkedHashMap的remove()与HashMap保持一致,区别在于afterNodeRemoval()。

// HashMap 中实现
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
} // HashMap 中实现
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode) {...}
else {
// 遍历单链表,寻找要删除的节点,并赋值给 node 变量
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode) {...}
// 将要删除的节点从单链表中移除
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node); // 调用删除回调方法进行后续操作
return node;
}
}
return null;
} // LinkedHashMap 中覆写
void afterNodeRemoval(Node<K,V> e) { // unlink
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
// 将 p 节点的前驱后后继引用置空
p.before = p.after = null;
// b 为 null,表明 p 是头节点
if (b == null)
head = a;
else
b.after = a;
// a 为 null,表明 p 是尾节点
if (a == null)
tail = b;
else
a.before = b;
}

简单描述下过程:

  • 根据 hash 定位到桶位置
  • 遍历链表或调用红黑树相关的删除方法
  • 从 LinkedHashMap 维护的双链表中移除要删除的节点

举个例子,假如我们要删除下图键值为 3 的节点。

根据 hash 定位到该节点属于3号桶,然后在对3号桶保存的单链表进行遍历。找到要删除的节点后,先从单链表中移除该节点。如下:

如果是HashMap,remove()的操作就结束了,但是LinkedHashMap还维护了一个双向链表,如下:

3、get()

// LinkedHashMap 中覆写
public V get(Object key) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return null;
// 如果 accessOrder 为 true,则调用 afterNodeAccess 将被访问节点移动到链表最后
if (accessOrder)
afterNodeAccess(e);
return e.value;
} // LinkedHashMap 中覆写
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
if (accessOrder && (last = tail) != e) {
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.after = null;
// 如果 b 为 null,表明 p 为头节点
if (b == null)
head = a;
else
b.after = a; if (a != null)
a.before = b;
/*
* 这里存疑,父条件分支已经确保节点 e 不会是尾节点,
* 那么 e.after 必然不会为 null,不知道 else 分支有什么作用
*/
else
last = b; if (last == null)
head = p;
else {
// 将 p 接在链表的最后
p.before = last;
last.after = p;
}
tail = p;
++modCount;
}
}

举个例子,依然访问下图键值为3的节点,访问前结构为:

访问后,键值为3的节点将会被移动到双向链表的最后位置,其前驱和后继也会跟着更新。访问后的结构如下:

走进JDK(十一)------LinkedHashMap的更多相关文章

  1. 调试过程中发现按f5无法走进jdk源码

    debug 模式 ,在fis=new FileInputStream(file); 行打断点 调试过程中发现按f5无法走进jdk源码 package com.lzl.spring.test; impo ...

  2. 走进JDK(十)------HashMap

    有人说HashMap是jdk中最难的类,重要性不用多说了,敲过代码的应该都懂,那么一起啃下这个硬骨头吧!一.哈希表在了解HashMap之前,先看看啥是哈希表,首先回顾下数组以及链表数组:采用一段连续的 ...

  3. 走进JDK(八)------AbstractSet

    说完了list,再说说colletion另外一个重要的子集set,set里不允许有重复数据,但是不是无序的.先看下set的整个架构吧: 一.类定义 public abstract class Abst ...

  4. 走进JDK(一)------Object

    阅读JDK源码也是一件非常重要的事情,尤其是使用频率最高的一些类,通过源码可以清晰的清楚其内部机制. 如何阅读jdk源码(基于java8)? 首先找到本地电脑中的jdk安装路径,例如我的就是E:\jd ...

  5. 走进JDK(十二)------TreeMap

    一.类定义 TreeMap的类结构: public class TreeMap<K,V> extends AbstractMap<K,V> implements Navigab ...

  6. 走进JDK(二)------String

    本文基于java8. 基本概念: Jvm 内存中 String 的表示是采用 unicode 编码 UTF-8 是 Unicode 的实现方式之一 一.String定义 public final cl ...

  7. 走进JDK(九)------AbstractMap

    map其实就是键值对,要想学习好map,得先从AbstractMap开始. 一.类定义.构造函数.成员变量 public abstract class AbstractMap<K,V> i ...

  8. 走进JDK(七)------LinkedList

    要学习LinkedList,首先得了解链表结构.上篇介绍ArrayList的文章中介绍了底层是数组结构,查询快的问题,但是删除时,需要将删除位置后面的元素全部左移,因此效率比较低. 链表则是这种机制: ...

  9. 走进JDK(六)------ArrayList

    对于广大java程序员来说,ArrayList的使用是非常广泛的,但是发现很多工作了好几年的程序员不知道底层是啥...这我觉得对于以后的发展是非常不利的,因为java中的每种数据结构的设计都是非常完善 ...

随机推荐

  1. 浅谈Java堆内存分代回收

    目录 1.概述 2.堆内存是如何分代的 3.各分代之间是如何配合工作的 1.概述 与C++不同的是, 在Java中我们无需关心对象占用空间的释放, 这主要得益于Java中的垃圾处理器(简称GC)帮助我 ...

  2. 关于 登录框的测试的一些case

    ---恢复内容开始--- 最近的一个task是需要测试一个登录的界面,我的产品是应用程序,不是网页,所以,测试起来,会相对简单一些 还是按照 质量模型的角度,来思考这个 页面的测试 Requireme ...

  3. tesseract的编译安装

    需要安装: <span style="font-family:'Microsoft YaHei';font-size:14px;">apt-get install au ...

  4. springboot日志logback配置

    <?xml version="1.0" encoding="UTF-8"?> <!-- scan:当此属性设置为true时,配置文件如果发生改 ...

  5. python之字符串拼接:%和format

    使用百分号拼接字符串: 例如: msg='i am %s my hobby is...' %'abc' print(msg) 如果需要用2个%s呢?就使用括号例如: msg='I am %s my h ...

  6. python--第二十三天总结(一对多和多对多)

    Django 的 ORM 有多种关系:一对一,多对一,多对多. 各自定义的方式为 :        一对一: OneToOneField        多对一: ForeignKey        多 ...

  7. DNS 原理

    一.DNS 是什么? DNS (Domain Name System 的缩写)的作用非常简单,就是根据域名查出IP地址.你可以把它想象成一本巨大的电话本. 举例来说,如果你要访问域名math.stac ...

  8. scrapy 的log功能

    只需要在配置文件 setting.py文件中加入LOG_FILE = "mySpider.log"LOG_LEVEL = "INFO" Scrapy提供5层lo ...

  9. MySqlBulkLoader设置Columns时要注意的地方

    在测试时发现有的表用MySqlBulkLoader一直加不上数据,经过检查,原来是因为表中的列名跟MYSQL的一个关键词对上了,所以在执行时把列名当做关键词进行处理了. LOAD DATA LOCAL ...

  10. 4-21 嵌套选择器 、块级元素和内联元素、光标、布局-overflow

    1.嵌套选择器 p{ }: 为所有 p 元素指定一个样式.(默认,,也就是说可以被改变样式) .marked{ }: 为所有 class="marked" 的元素指定一个样式. . ...