http://blog.itpub.net/31542119/viewspace-2199549/

XGBoost是boosting算法的其中一种。Boosting算法的思想是将许多弱分类器集成在一起形成一个强分类器。因为XGBoost是一种提升树模型,所以它是将许多树模型集成在一起,形成一个很强的分类器。而所用到的树模型则是CART回归树模型。讲解其原理前,先讲解一下CART回归树。

一、CART回归树

CART回归树是假设树为二叉树,通过不断将特征进行分裂。比如当前树结点是基于第j个特征值进行分裂的,设该特征值小于s的样本划分为左子树,大于s的样本划分为右子树。

而CART回归树实质上就是在该特征维度对样本空间进行划分,而这种空间划分的优化是一种NP难问题,因此,在决策树模型中是使用启发式方法解决。典型CART回归树产生的目标函数为:

因此,当我们为了求解最优的切分特征j和最优的切分点s,就转化为求解这么一个目标函数:

所以我们只要遍历所有特征的的所有切分点,就能找到最优的切分特征和切分点。最终得到一棵回归树。

二、XGBoost算法思想

该算法思想就是不断地添加树,不断地进行特征分裂来生长一棵树,每次添加一个树,其实是学习一个新函数,去拟合上次预测的残差。当我们训练完成得到k棵树,我们要预测一个样本的分数,其实就是根据这个样本的特征,在每棵树中会落到对应的一个叶子节点,每个叶子节点就对应一个分数,最后只需要将每棵树对应的分数加起来就是该样本的预测值。

注:w_q(x)为叶子节点q的分数,f(x)为其中一棵回归树

如下图例子,训练出了2棵决策树,小孩的预测分数就是两棵树中小孩所落到的结点的分数相加。爷爷的预测分数同理。

三、XGBoost原理 

XGBoost目标函数定义为:

目标函数由两部分构成,第一部分用来衡量预测分数和真实分数的差距,另一部分则是正则化项。正则化项同样包含两部分,T表示叶子结点的个数,w表示叶子节点的分数。γ可以控制叶子结点的个数,λ可以控制叶子节点的分数不会过大,防止过拟合。

正如上文所说,新生成的树是要拟合上次预测的残差的,即当生成t棵树后,预测分数可以写成:

同时,可以将目标函数改写成:

很明显,我们接下来就是要去找到一个f_t能够最小化目标函数。XGBoost的想法是利用其在f_t=0处的泰勒二阶展开近似它。所以,目标函数近似为:

其中g_i为一阶导数,h_i为二阶导数:

由于前t-1棵树的预测分数与y的残差对目标函数优化不影响,可以直接去掉。简化目标函数为:

上式是将每个样本的损失函数值加起来,我们知道,每个样本都最终会落到一个叶子结点中,所以我们可以将所以同一个叶子结点的样本重组起来,过程如下图:

因此通过上式的改写,我们可以将目标函数改写成关于叶子结点分数w的一个一元二次函数,求解最优的w和目标函数值就变得很简单了,直接使用顶点公式即可。因此,最优的w和目标函数公式为

四、分裂结点算法 

在上面的推导中,我们知道了如果我们一棵树的结构确定了,如何求得每个叶子结点的分数。但我们还没介绍如何确定树结构,即每次特征分裂怎么寻找最佳特征,怎么寻找最佳分裂点。

正如上文说到,基于空间切分去构造一颗决策树是一个NP难问题,我们不可能去遍历所有树结构,因此,XGBoost使用了和CART回归树一样的想法,利用贪婪算法,遍历所有特征的所有特征划分点,不同的是使用上式目标函数值作为评价函数。具体做法就是分裂后的目标函数值比单子叶子节点的目标函数的增益,同时为了限制树生长过深,还加了个阈值,只有当增益大于该阈值才进行分裂。

同时可以设置树的最大深度、当样本权重和小于设定阈值时停止生长去防止过拟合。

五、Shrinkage and Column Subsampling

XGBoost还提出了两种防止过拟合的方法:Shrinkage and Column Subsampling。Shrinkage方法就是在每次迭代中对树的每个叶子结点的分数乘上一个缩减权重η,这可以使得每一棵树的影响力不会太大,留下更大的空间给后面生成的树去优化模型。Column Subsampling类似于随机森林中的选取部分特征进行建树。其可分为两种,一种是按层随机采样,在对同一层内每个结点分裂之前,先随机选择一部分特征,然后只需要遍历这部分的特征,来确定最优的分割点。另一种是随机选择特征,则建树前随机选择一部分特征然后分裂就只遍历这些特征。一般情况下前者效果更好。

六、近似算法

对于连续型特征值,当样本数量非常大,该特征取值过多时,遍历所有取值会花费很多时间,且容易过拟合。因此XGBoost思想是对特征进行分桶,即找到l个划分点,将位于相邻分位点之间的样本分在一个桶中。在遍历该特征的时候,只需要遍历各个分位点,从而计算最优划分。从算法伪代码中该流程还可以分为两种,全局的近似是在新生成一棵树之前就对各个特征计算分位点并划分样本,之后在每次分裂过程中都采用近似划分,而局部近似就是在具体的某一次分裂节点的过程中采用近似算法。

七、针对稀疏数据的算法(缺失值处理)

当样本的第i个特征值缺失时,无法利用该特征进行划分时,XGBoost的想法是将该样本分别划分到左结点和右结点,然后计算其增益,哪个大就划分到哪边。

八、XGBoost的优点

之所以XGBoost可以成为机器学习的大杀器,广泛用于数据科学竞赛和工业界,是因为它有许多优点:

1.使用许多策略去防止过拟合,如:正则化项、Shrinkage and Column Subsampling等。

2. 目标函数优化利用了损失函数关于待求函数的二阶导数

3.支持并行化,这是XGBoost的闪光点,虽然树与树之间是串行关系,但是同层级节点可并行。具体的对于某个节点,节点内选择最佳分裂点,候选分裂点计算增益用多线程并行。训练速度快。

4.添加了对稀疏数据的处理。

5.交叉验证,early stop,当预测结果已经很好的时候可以提前停止建树,加快训练速度。

6.支持设置样本权重,该权重体现在一阶导数g和二阶导数h,通过调整权重可以去更加关注一些样本。

【本文转载自: 磐创AI,作者:Ray,原文链接:https://mp.weixin.qq.com/s/AnENu0i3i5CdUQkZscMKgQ】

一文读懂机器学习大杀器XGBoost原理的更多相关文章

  1. 【深度学习】一文读懂机器学习常用损失函数(Loss Function)

    最近太忙已经好久没有写博客了,今天整理分享一篇关于损失函数的文章吧,以前对损失函数的理解不够深入,没有真正理解每个损失函数的特点以及应用范围,如果文中有任何错误,请各位朋友指教,谢谢~ 损失函数(lo ...

  2. 【Java基本功】一文读懂String及其包装类的实现原理

    String作为Java中最常用的引用类型,相对来说基本上都比较熟悉,无论在平时的编码过程中还是在笔试面试中,String都很受到青睐,然而,在使用String过程中,又有较多需要注意的细节之处. S ...

  3. 「Java基本功」一文读懂Java内部类的用法和原理

    内部类初探 一.什么是内部类? 内部类是指在一个外部类的内部再定义一个类.内部类作为外部类的一个成员,并且依附于外部类而存在的.内部类可为静态,可用protected和private修饰(而外部类只能 ...

  4. 一文读懂 SuperEdge 边缘容器架构与原理

    前言 superedge是腾讯推出的Kubernetes-native边缘计算管理框架.相比openyurt以及kubeedge,superedge除了具备Kubernetes零侵入以及边缘自治特性, ...

  5. 大数据篇:一文读懂@数据仓库(PPT文字版)

    大数据篇:一文读懂@数据仓库 1 网络词汇总结 1.1 数据中台 数据中台是聚合和治理跨域数据,将数据抽象封装成服务,提供给前台以业务价值的逻辑概念. 数据中台是一套可持续"让企业的数据用起 ...

  6. 一文读懂Java动态代理

    作者 :潘潘 日期 :2020-11-22 事实上,对于很多Java编程人员来说,可能只需要达到从入门到上手的编程水准,就能很好的完成大部分研发工作.除非自己强主动获取,或者工作倒逼你学习,否则我们好 ...

  7. 使用docker-compose 大杀器来部署服务 上

    使用docker-compose 大杀器来部署服务 上 我们都听过或者用过 docker,然而使用方式却是仅仅用手动的方式,这样去操作 docker 还是很原始. 好吧,可能在小白的眼中噼里啪啦的对着 ...

  8. 使用docker-compose 大杀器来部署服务 上(转)

    使用docker-compose 大杀器来部署服务 上 我们都听过或者用过 docker,然而使用方式却是仅仅用手动的方式,这样去操作 docker 还是很原始. 好吧,可能在小白的眼中噼里啪啦的对着 ...

  9. 一文读懂HTTP/2及HTTP/3特性

    摘要: 学习 HTTP/2 与 HTTP/3. 前言 HTTP/2 相比于 HTTP/1,可以说是大幅度提高了网页的性能,只需要升级到该协议就可以减少很多之前需要做的性能优化工作,当然兼容问题以及如何 ...

随机推荐

  1. ”危险“的restrict与GCC的编译优化

    restrict是C99标准中新添加的关键字,对于从C89标准开始起步学习C语言的同学来说(包括我),第一次看到restrict还是相当陌生的.Wikipedia给出的解释如下: In the C p ...

  2. 一文了解Python中的判断语句

    判断(if)语句 目标 开发中的应用场景 if 语句体验 if 语句进阶 综合应用 01. 开发中的应用场景 生活中的判断几乎是无所不在的,我们每天都在做各种各样的选择,如果这样?如果那样?…… 程序 ...

  3. Java 中的 String 真的是不可变吗?

    我们都知道 Java 中的 String 类的设计是不可变的,来看下 String 类的源码. public final class String implements java.io.Seriali ...

  4. 我看C#的Equals()和GetHashCode()方法

    首先先谈一下Equals()这个方法: Equals()方法,来自于Object,是我们经常需要重写的方法.此方法的默认实现大概是这样的: public virtual bool Equals(obj ...

  5. 深入理解 JavaScript 异步系列(1)——基础

    前言 2014年秋季写完了<深入理解javascript原型和闭包系列>,已经帮助过很多人走出了 js 原型.作用域.闭包的困惑,至今仍能经常受到好评的留言. 很早之前我就总结了JS三座大 ...

  6. ABP框架是怎么一回事呢?

    ABP(ASP.NET Boilerplate['bɔɪlɚplet]:样板文件),就是一套基于.Net开源框架,官方地址为:https://aspnetboilerplate.com/ , 在这个地 ...

  7. linux 命令 — lsof

    lsof 列出打开的文件 输出 FD: 文件描述符,cwd表示应用程序当前工作目录,txt表示打开的是程序代码(二进制文件或者共享库),0标准输入,1标准输出,2错误流 TYPE:DIR目录,CHR字 ...

  8. 聊聊Flexbox布局中的flex的演算法

    到目前为止,Flexbox布局应该是目前最流行的布局方式之一了.而Flexbox布局的最大特性就是让Flex项目可伸缩,也就是让Flex项目的宽度和高度可以自动填充Flex容器剩余的空间或者缩小Fle ...

  9. 【Go】优雅的读取http请求或响应的数据-续

    原文链接:https://blog.thinkeridea.com/201902/go/you_ya_de_du_qu_http_qing_qiu_huo_xiang_ying_de_shu_ju_2 ...

  10. eclipse如何将项目上传到码云

    把Eclipse项目上传到码云的步骤: 一.将代码提交到本地 1.登录码云:新建项目 2.输入项目名: 3.空项目创建成功如下图: 4.右键点击Eclipse的项目,选择“Team”——>“Sh ...