写在前面

准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正。

如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn

Movie Recommender

ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法
v0.7 动态 API 需要升级到v0.8 终端应用程序 .csv 电影推荐 推荐 场感知分解机

概述

MovieRecommender是一个简单的应用程序,它构建和使用推荐模型。

这是一个关于如何使用推荐来增强现有ASP.NET应用程序的终端示例。

本示例从流行的Netflix应用程序中汲取了灵感,并且尽管这个示例主要关注电影推荐,但是可以很容易地应用于任何类型的产品推荐。

特点

  • Web应用程序

    • 这是一个终端ASP.NET应用程序,它包含了三个用户'Ankit','Cesar','Gal'。然后,它使用ML.NET推荐模型给这三个用户提供建议。
  • 推荐模型

    • 应用程序使用MovieLens数据集构建推荐模型。模型训练代码使用基于协同过滤的推荐方法。

它如何工作?

训练模型

Movie Recommender 使用基于协同过滤的推荐方法。

协同过滤的基本假设是,如果A(例如Gal)在某个问题上与B(例如Cesar)具有相同的观点,则A(Gal)更有可能在另一个问题上具有和B(Cesar)相同的意见,而不是一个随机的人。

对于此示例,我们使用 http://files.grouplens.org/datasets/movielens/ml-latest-small.zip 数据集。

模型训练代码可以在MovieRecommender_Model中找到。

模型训练遵循以下四个步骤来构建模型。 您可以先跳过代码并继续。

使用模型

通过以下步骤在Controller中使用训练的模型。

1. 创建ML.NET环境并加载已经训练过的模型


// 1. Create the ML.NET environment and load the MoviesRecommendation Model
var ctx = new MLContext(); ITransformer loadedModel;
using (var stream = new FileStream(_movieService.GetModelPath(), FileMode.Open, FileAccess.Read, FileShare.Read))
{
loadedModel = ctx.Model.Load(stream);
}

2. 创建预测函数以预测一组电影推荐

   //3. Create a prediction function
var predictionfunction = loadedModel.MakePredictionFunction<RatingData, RatingPrediction>(ctx); List<Tuple<int, float>> ratings = new List<Tuple<int, float>>();
List<Tuple<int, int>> MovieRatings = _profileService.GetProfileWatchedMovies(id);
List<Movie> WatchedMovies = new List<Movie>(); foreach (Tuple<int, int> tuple in MovieRatings)
{
WatchedMovies.Add(_movieService.Get(tuple.Item1));
} RatingPrediction prediction = null; foreach (var movie in _movieService._trendingMovies)
{
// Call the Rating Prediction for each movie prediction
prediction = predictionfunction.Predict(new RatingData { userId = id.ToString(), movieId = movie.MovieID.ToString()}); // Normalize the prediction scores for the "ratings" b/w 0 - 100
var normalizedscore = Sigmoid(prediction.Score); // Add the score for recommendation of each movie in the trending movie list
ratings.Add(Tuple.Create(movie.MovieID, normalizedscore));
}

3. 为要显示的视图提供评分预测

   ViewData["watchedmovies"] = WatchedMovies;
ViewData["ratings"] = ratings;
ViewData["trendingmovies"] = _movieService._trendingMovies;
return View(activeprofile);

替代方法

这个示例显示了许多可以用于ML.NET的推荐方法之一。根据您的特定场景,您可以选择以下任何最适合您的用例的方法。

场景 算法 示例链接
您想使用诸如用户Id、产品Id、评分、产品描述、产品价格等属性(特性)作为推荐引擎。在这种场景中,场感知分解机是一种通用的方法,您可以使用它来构建推荐引擎 场感知分解机 当前示例
你有用用户购买行为中的户ID,产品和评分。对于这种情况,您应该使用矩阵分解法 矩阵分解 矩阵分解 - 推荐
你仅有用户购买行为中用户Id和产品Id,但是没有评分。 这在来自在线商店的数据集中很常见,您可能只能访问客户的购买历史记录。 有了这种类型的推荐,你可以建立一个推荐引擎用来推荐经常购买的物品。 One Class 矩阵分解 Product Recommender

ML.NET 示例:推荐之场感知分解机的更多相关文章

  1. ML.NET 示例:推荐之矩阵分解

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  2. ML.NET 示例:开篇

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  3. ML.NET 示例:目录

    ML.NET 示例中文版:https://github.com/feiyun0112/machinelearning-samples.zh-cn 英文原版请访问:https://github.com/ ...

  4. 分解机(Factorization Machines)推荐算法原理

    对于分解机(Factorization Machines,FM)推荐算法原理,本来想自己单独写一篇的.但是看到peghoty写的FM不光简单易懂,而且排版也非常好,因此转载过来,自己就不再单独写FM了 ...

  5. 机器学习算法系列:FM分解机

    在线性回归中,是假设每个特征之间独立的,也即是线性回归模型是无法捕获特征之间的关系.为了捕捉特征之间的关系,便有了FM分解机的出现了.FM分解机是在线性回归的基础上加上了交叉特征,通过学习交叉特征的权 ...

  6. ML.NET 示例:推荐之One Class 矩阵分解

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  7. ML.NET 示例:深度学习之集成TensorFlow

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  8. ML.NET 示例:聚类之鸢尾花

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  9. ML.NET 示例:聚类之客户细分

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

随机推荐

  1. java数据结构 • 面向对象 • 异常 • 随机数·时间

    • 语法基础 • 控制流 • 数据结构 • 面向对象 • 异常 • 随机数 //String常用的方法: indexOf   charAt   charAt   codePointAt   compa ...

  2. abseil初体验[google开源的C++库]

    Google公开了其项目内部使用的一系列C++库,具体介绍参考: http://www.infoq.com/cn/news/2017/10/abseil?utm_source=infoq&ut ...

  3. RAS非对称加密与数字证书数字签名

    它用图片通俗易懂地解释了,"数字签名"(digital signature)和"数字证书"(digital certificate)到底是什么. 我对这些问题的 ...

  4. PostgreSQL 表值函数

    方法1create type deptSon as ( mid ), id ), name ), DeptParentId ) ); CREATE OR REPLACE FUNCTION functi ...

  5. 看到一个想收藏的的AJAX小列子

    用户登录的验证可以使用 form 表单提交,也可以使用 ajax 技术异步提交. AJAX 即 Asynchronous Javascript And XML(异步 JavaScript 和 XML) ...

  6. 解决终端SSH连接服务器一段时间不操作之后卡死的问题

    卡死是因为LIUNX安全设置问题,在一段时间内没有使用数据的情况下会自动断开,解决方法就是让本地或者服务器隔一段时间发送一个请求给对方即可 在本地打开配置文件(不建议在server端设置) sudo ...

  7. react-native 简介及环境

    概要 react native 环境搭建 hello react native react native 发布 react native https://facebook.github.io/reac ...

  8. 【2018.05.05 C与C++基础】C++中的自动废料收集:概念与问题引入

    在阅读C++语言的设计与演化一书时,作者多次提到希望能设计出一个自动废料收集,然而出于种种考虑,始终未将自动废料收集纳入标准讨论中,而是由Coder自己考虑是否在程序中实现废料收集. 当然了,许多Ja ...

  9. MySQL高级知识(十三)——表锁

    前言:锁是计算机协调多个进程或线程并发访问某一资源的机制.在数据库中,除传统的计算机资源(如CPU.RAM.I/O等)的争用外,数据也是一种供许多用户共享的资源.如何保证数据并发访问的一致性.有效性是 ...

  10. MySQL高级知识(一)——基础

    前言:MySQL高级知识主要来自尚硅谷中MySQL的视频资源.对于网上视频资源来说,尚硅谷是一个非常好的选择.通过对相应部分的学习,笔者可以说收益颇丰,非常感谢尚硅谷. 1.关于MySQL的一些文件 ...