对COMP20003中的Priority queue部分进行总结。图片来自于COMP20003


queue队列,顾名思义特点先进先出

priority queue优先队列,出来的顺序按照优先级priority大小,越大(小)的先pop。

普通的方法:

  Unsorted array:

    Construct: O(n)

    Get highest priority: O(n)

  Sorted array:

    Construct: O(n2)

    Get highest priority: O(1)

使用堆heap方法则可以:

    Construct:O(n)

    Get hishest priority: O(1)

  heap data structre: 完全树的数组(指针)形式(不一定是二叉树)。其每个节点满足优先级高于它的子节点,但左右子节点并没有大小关系。 本文主要讲binary heap形式的。

  

  从根节点开始编号放入数组中,为了后续操作方便,可以将数组[0]空出不用,从1开始(如上图,下面的文字叙述也按从1开始,将数组叫做A),因为完全树的关系,如果一个节点是A[i],则它的两个子节点则是A[2 * i]和A[2 * i + 1]。

  假定优先级越高越靠前,则第一个节点是(优先级)最大的,之后的都比它小,但左子树上的点和右子树上的点大小关系并不确定。

  当pop时,将第一个节点排出,将最后一个节点放到第一个节点的位置,然后从第一个节点位置开始进行downHeap操作修复堆(使得每个节点满足优先级高于它的子节点)。

  当push时,将新插入的节点接在末尾,从末尾开始进行upHeap操作修复堆(使得每个节点满足优先级高于它的子节点)。

  downHeap:从指定节点位置A[i]开始,与其两个子节点A[2 * i]和A[2 * i + 1]进行优先级比较(或与两个子节点中较大的那个进行比较),如果是A[i]最大,则停止,如果不是,则和较大的那个子节点交换位置,再继续与子节点进行比较,直到没有子节点时停止。

  upHeap:从指定位置A[i]开始,与其根节点A[i / 2]进行比较,如果根节点大,则停止,否则交换位置继续与根节点比较,直到没有根节点为止。

  两种建堆方法:

    1.插入一个节点,进行一次upHeap操作修复堆。   总复杂度O(nlogn)

    2.将全部节点插入后,从A[n / 2]到A[1]进行upHeap操作修复堆,即heapSort。看似复杂度还是O(nlogn),但实际上是O(n),因为只有一半的节点需要进行upHeap操作且只有A[1]的upHeap是O(logn),数学证明不懂,以后看看有没有时间补吧。。。

    

    

    

我的代码:

  https://raw.githubusercontent.com/Will-Zhu-27/Algorithms-and-Data-Structures/master/priorityQueue.c

  https://raw.githubusercontent.com/Will-Zhu-27/Algorithms-and-Data-Structures/master/priorityQueue.h

优先队列Priority Queue和堆Heap的更多相关文章

  1. 《Algorithms 4th Edition》读书笔记——2.4 优先队列(priority queue)-Ⅰ

    许多应用程序都需要处理有序的元素,但不一定要求他们全部有序,或者是不一定要以此就将他们排序.很多情况下我们会手机一些元素,处理当前键值最大的元素,然后再收集更多的元素,再处理当前键值最大的元素.如此这 ...

  2. 第二十八篇 玩转数据结构——堆(Heap)和有优先队列(Priority Queue)

          1.. 优先队列(Priority Queue) 优先队列与普通队列的区别:普通队列遵循先进先出的原则:优先队列的出队顺序与入队顺序无关,与优先级相关. 优先队列可以使用队列的接口,只是在 ...

  3. 【算法与数据结构】二叉堆和优先队列 Priority Queue

    优先队列的特点 普通队列遵守先进先出(FIFO)的规则,而优先队列虽然也叫队列,规则有所不同: 最大优先队列:优先级最高的元素先出队 最小优先队列:优先级最低的元素先出队 优先队列可以用下面几种数据结 ...

  4. 《Algorithms 4th Edition》读书笔记——2.4 优先队列(priority queue)-Ⅴ

    命题Q.对于一个含有N个元素的基于堆叠优先队列,插入元素操作只需要不超过(lgN + 1)次比较,删除最大元素的操作需要不超过2lgN次比较. 证明.由命题P可知,两种操作都需要在根节点和堆底之间移动 ...

  5. 《Algorithms 4th Edition》读书笔记——2.4 优先队列(priority queue)-Ⅳ

    2.4.4 堆的算法 我们用长度为 N + 1的私有数组pq[]来表示一个大小为N的堆,我们不会使用pq[0],堆元素放在pq[1]至pq[N]中.在排序算法中,我们只能通过私有辅助函数less()和 ...

  6. 笔试算法题(57):基于堆的优先级队列实现和性能分析(Priority Queue based on Heap)

    议题:基于堆的优先级队列(最大堆实现) 分析: 堆有序(Heap-Ordered):每个节点的键值大于等于该节点的所有孩子节点中的键值(如果有的话),而堆数据结构的所有节点都按照完全有序二叉树 排.当 ...

  7. c++ STL:队列queue、优先队列priority queue 的使用

    说明:本文全文转载而来,原文链接:http://www.cppblog.com/wanghaiguang/archive/2012/06/05/177644.html C++ Queues(队列) C ...

  8. 《Algorithms 4th Edition》读书笔记——2.4 优先队列(priority queue)-Ⅶ(延伸:堆排序的实现)

    2.4.5 堆排序 我们可以把任意优先队列变成一种排序方法.将所有元素插入一个查找最小元素的有限队列,然后再重复调用删除最小元素的操作来将他们按顺序删去.用无序数组实现的优先队列这么做相当于进行一次插 ...

  9. 《Algorithms 4th Edition》读书笔记——2.4 优先队列(priority queue)-Ⅵ

    · 学后心得体会与部分习题实现 心得体会: 曾经只是了解了优先队列的基本性质,并会调用C++ STL库中的priority_queue以及 java.util.PriorityQueue<E&g ...

随机推荐

  1. Nginx/LVS/HAProxy 负载均衡软件的优缺点详解

    Nginx/LVS/HAProxy 负载均衡软件的优缺点详解   Nginx/LVS/HAProxy是目前使用最广泛的三种负载均衡软件,本人都在多个项目中实施过,参考了一些资料,结合自己的一些使用经验 ...

  2. ubuntu-18.04 设置开机启动脚本-亲测有效

    ubuntu-18.04不能像ubuntu14一样通过编辑rc.local来设置开机启动脚本,通过下列简单设置后,可以使rc.local重新发挥作用. 2.将下列内容复制进rc-local.servi ...

  3. nodejs 使用 ethers创建以太坊钱包

    创建钱包创建钱包流程: 生成随机助记词 => 通过助记词创建钱包=>钱包信息和加密明文(私钥和密码加密) 导入钱包通过插件提供方法,根据助记词|keyStore|私钥,找到钱包信息(地址和 ...

  4. LongLightUtils【保持屏幕常亮工具类】

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 这里只是简单记录下保持屏幕常亮工具类LongLightUtils的使用,具体请阅读参考资料<Android屏幕常亮,其实很简单 ...

  5. MySQL系列--4.使用Python3访问数据库

    1.安装MySQL驱动 pip install mysql-connector 安装完成后进入命令行模式,导入驱动,如果不报错,说明安装成功 Python 3.6.7 (default, Oct 22 ...

  6. vue中用mock制造模拟接口(本文主要解决坑),一定要看完哦

    最近新入职一家公司,后端造接口速度很慢,想来想去还是搞一套模拟接口,来满足开发需求,有人会问,我造一个死数据不就可以了吗?或者说,后端数据结构都没出来,字段我怎么定? 问这个问题的人不奇怪,我之前也有 ...

  7. Java 在PDF中添加水印——文本/图片水印

    水印是一种十分常用的防伪手段,常用于各种文档.资料等.常见的水印,包括文字类型的水印.图片或logo类型的水印.以下Java示例,将分别使用insertTextWatermark(PdfPageBas ...

  8. Java高阶语法---transient

    背景:听说transient Java高阶语法是挺进BAT必经之路. transient: Java中transient 关键字的作用,简单的说就是让某些被修饰的成员属性变量不被序列化. 这又扯到了序 ...

  9. GraphQL基础篇

    最近参与了一个大型项目,大型项目随着系统业务量的增大,不同的应用和系统共同使用着许多的服务接口API,而随着业务的变化和发展,不同的应用对相同资源的不同使用方法最终会导致需要维护的服务API数量呈现爆 ...

  10. WinForm DataGridView实时更新表格数据

    前言 一个特殊的项目没有用第三方控件库,但用到了DataGridView,由于是客户端产生的数据,所以原始数据源就是一个集合. 根据需要会向集合中添加数据项,或是修改某些数据项的值,但DataGrid ...