转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/44151213

来自:shiter编写程序的艺术

  • 基础知识

计算机视觉是一门研究使用计算机来模拟人的视觉系统的学科。“一图胜千言”,人类对于图像中的信息感知效率远超文字等其他媒介,人类获取的信息总量中更是有高达80%依靠视觉系统[1]。相对于人类高效的图像信息提取能力,计算机在图像信息的理解上仍然效率低下。 

计算机视觉作为一门交叉学科,综合了生物学,心理学,数学,计算机科学等学科,从20世纪60年代至今其在科学研究领域中的大量成果已经应用于工程领域,并影响了我们每个人生活的方方面面。 

双目立体视觉是计算机视觉领域的重要分支,它通过模拟人的视觉系统来处理现实世界。以机器人,无人汽车导航为例,由于双目立体匹配在非接触测量中的优秀性能,视觉测量在探月工程,火星探测工程中起到了重要作用[2],如图所示的我国嫦娥探月工程的巡航车就配备了立体视觉导航系统,来进行行进间的运动控制和路径规划[3]。

主要参考:http://blog.csdn.net/wangyaninglm/article/details/51533549

之前在网上也没有现成的代码,现在把库中的sample拿出来,分享下

/*
* stereo_match.cpp
* calibration
*
* Created by Victor Eruhimov on 1/18/10.
* Copyright 2010 Argus Corp. All rights reserved.
*
*/ #include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/contrib/contrib.hpp" #include <stdio.h> using namespace cv; static void print_help()
{
printf("\nDemo stereo matching converting L and R images into disparity and point clouds\n");
printf("\nUsage: stereo_match <left_image> <right_image> [--algorithm=bm|sgbm|hh|var] [--blocksize=<block_size>]\n"
"[--max-disparity=<max_disparity>] [--scale=scale_factor>] [-i <intrinsic_filename>] [-e <extrinsic_filename>]\n"
"[--no-display] [-o <disparity_image>] [-p <point_cloud_file>]\n");
} static void saveXYZ(const char* filename, const Mat& mat)
{
const double max_z = 1.0e4;
FILE* fp = fopen(filename, "wt");
for(int y = 0; y < mat.rows; y++)
{
for(int x = 0; x < mat.cols; x++)
{
Vec3f point = mat.at<Vec3f>(y, x);
if(fabs(point[2] - max_z) < FLT_EPSILON || fabs(point[2]) > max_z) continue;
fprintf(fp, "%f %f %f\n", point[0], point[1], point[2]);
}
}
fclose(fp);
} int main(int argc, char** argv)
{
const char* algorithm_opt = "--algorithm=";
const char* maxdisp_opt = "--max-disparity=";
const char* blocksize_opt = "--blocksize=";
const char* nodisplay_opt = "--no-display";
const char* scale_opt = "--scale="; if(argc < 3)
{
print_help();
return 0;
}
const char* img1_filename = 0;
const char* img2_filename = 0;
const char* intrinsic_filename = 0;
const char* extrinsic_filename = 0;
const char* disparity_filename = 0;
const char* point_cloud_filename = 0; enum { STEREO_BM=0, STEREO_SGBM=1, STEREO_HH=2, STEREO_VAR=3 };
int alg = STEREO_SGBM;
int SADWindowSize = 0, numberOfDisparities = 0;
bool no_display = false;
float scale = 1.f; StereoBM bm;
StereoSGBM sgbm;
StereoVar var; for( int i = 1; i < argc; i++ )
{
if( argv[i][0] != '-' )
{
if( !img1_filename )
img1_filename = argv[i];
else
img2_filename = argv[i];
}
else if( strncmp(argv[i], algorithm_opt, strlen(algorithm_opt)) == 0 )
{
char* _alg = argv[i] + strlen(algorithm_opt);
alg = strcmp(_alg, "bm") == 0 ? STEREO_BM :
strcmp(_alg, "sgbm") == 0 ? STEREO_SGBM :
strcmp(_alg, "hh") == 0 ? STEREO_HH :
strcmp(_alg, "var") == 0 ? STEREO_VAR : -1;
if( alg < 0 )
{
printf("Command-line parameter error: Unknown stereo algorithm\n\n");
print_help();
return -1;
}
}
else if( strncmp(argv[i], maxdisp_opt, strlen(maxdisp_opt)) == 0 )
{
if( sscanf( argv[i] + strlen(maxdisp_opt), "%d", &numberOfDisparities ) != 1 ||
numberOfDisparities < 1 || numberOfDisparities % 16 != 0 )
{
printf("Command-line parameter error: The max disparity (--maxdisparity=<...>) must be a positive integer divisible by 16\n");
print_help();
return -1;
}
}
else if( strncmp(argv[i], blocksize_opt, strlen(blocksize_opt)) == 0 )
{
if( sscanf( argv[i] + strlen(blocksize_opt), "%d", &SADWindowSize ) != 1 ||
SADWindowSize < 1 || SADWindowSize % 2 != 1 )
{
printf("Command-line parameter error: The block size (--blocksize=<...>) must be a positive odd number\n");
return -1;
}
}
else if( strncmp(argv[i], scale_opt, strlen(scale_opt)) == 0 )
{
if( sscanf( argv[i] + strlen(scale_opt), "%f", &scale ) != 1 || scale < 0 )
{
printf("Command-line parameter error: The scale factor (--scale=<...>) must be a positive floating-point number\n");
return -1;
}
}
else if( strcmp(argv[i], nodisplay_opt) == 0 )
no_display = true;
else if( strcmp(argv[i], "-i" ) == 0 )
intrinsic_filename = argv[++i];
else if( strcmp(argv[i], "-e" ) == 0 )
extrinsic_filename = argv[++i];
else if( strcmp(argv[i], "-o" ) == 0 )
disparity_filename = argv[++i];
else if( strcmp(argv[i], "-p" ) == 0 )
point_cloud_filename = argv[++i];
else
{
printf("Command-line parameter error: unknown option %s\n", argv[i]);
return -1;
}
} if( !img1_filename || !img2_filename )
{
printf("Command-line parameter error: both left and right images must be specified\n");
return -1;
} if( (intrinsic_filename != 0) ^ (extrinsic_filename != 0) )
{
printf("Command-line parameter error: either both intrinsic and extrinsic parameters must be specified, or none of them (when the stereo pair is already rectified)\n");
return -1;
} if( extrinsic_filename == 0 && point_cloud_filename )
{
printf("Command-line parameter error: extrinsic and intrinsic parameters must be specified to compute the point cloud\n");
return -1;
} int color_mode = alg == STEREO_BM ? 0 : -1;
Mat img1 = imread(img1_filename, color_mode);
Mat img2 = imread(img2_filename, color_mode); if( scale != 1.f )
{
Mat temp1, temp2;
int method = scale < 1 ? INTER_AREA : INTER_CUBIC;
resize(img1, temp1, Size(), scale, scale, method);
img1 = temp1;
resize(img2, temp2, Size(), scale, scale, method);
img2 = temp2;
} Size img_size = img1.size(); Rect roi1, roi2;
Mat Q; if( intrinsic_filename )
{
// reading intrinsic parameters
FileStorage fs(intrinsic_filename, CV_STORAGE_READ);
if(!fs.isOpened())
{
printf("Failed to open file %s\n", intrinsic_filename);
return -1;
} Mat M1, D1, M2, D2;
fs["M1"] >> M1;
fs["D1"] >> D1;
fs["M2"] >> M2;
fs["D2"] >> D2; M1 *= scale;
M2 *= scale; fs.open(extrinsic_filename, CV_STORAGE_READ);
if(!fs.isOpened())
{
printf("Failed to open file %s\n", extrinsic_filename);
return -1;
} Mat R, T, R1, P1, R2, P2;
fs["R"] >> R;
fs["T"] >> T; stereoRectify( M1, D1, M2, D2, img_size, R, T, R1, R2, P1, P2, Q, CALIB_ZERO_DISPARITY, -1, img_size, &roi1, &roi2 ); Mat map11, map12, map21, map22;
initUndistortRectifyMap(M1, D1, R1, P1, img_size, CV_16SC2, map11, map12);
initUndistortRectifyMap(M2, D2, R2, P2, img_size, CV_16SC2, map21, map22); Mat img1r, img2r;
remap(img1, img1r, map11, map12, INTER_LINEAR);
remap(img2, img2r, map21, map22, INTER_LINEAR); img1 = img1r;
img2 = img2r;
} numberOfDisparities = numberOfDisparities > 0 ? numberOfDisparities : ((img_size.width/8) + 15) & -16; bm.state->roi1 = roi1;
bm.state->roi2 = roi2;
bm.state->preFilterCap = 31;
bm.state->SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 9;
bm.state->minDisparity = 0;
bm.state->numberOfDisparities = numberOfDisparities;
bm.state->textureThreshold = 10;
bm.state->uniquenessRatio = 15;
bm.state->speckleWindowSize = 100;
bm.state->speckleRange = 32;
bm.state->disp12MaxDiff = 1; sgbm.preFilterCap = 63;
sgbm.SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 3; int cn = img1.channels(); sgbm.P1 = 8*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;
sgbm.P2 = 32*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;
sgbm.minDisparity = 0;
sgbm.numberOfDisparities = numberOfDisparities;
sgbm.uniquenessRatio = 10;
sgbm.speckleWindowSize = bm.state->speckleWindowSize;
sgbm.speckleRange = bm.state->speckleRange;
sgbm.disp12MaxDiff = 1;
sgbm.fullDP = alg == STEREO_HH; var.levels = 3; // ignored with USE_AUTO_PARAMS
var.pyrScale = 0.5; // ignored with USE_AUTO_PARAMS
var.nIt = 25;
var.minDisp = -numberOfDisparities;
var.maxDisp = 0;
var.poly_n = 3;
var.poly_sigma = 0.0;
var.fi = 15.0f;
var.lambda = 0.03f;
var.penalization = var.PENALIZATION_TICHONOV; // ignored with USE_AUTO_PARAMS
var.cycle = var.CYCLE_V; // ignored with USE_AUTO_PARAMS
var.flags = var.USE_SMART_ID | var.USE_AUTO_PARAMS | var.USE_INITIAL_DISPARITY | var.USE_MEDIAN_FILTERING ; Mat disp, disp8;
//Mat img1p, img2p, dispp;
//copyMakeBorder(img1, img1p, 0, 0, numberOfDisparities, 0, IPL_BORDER_REPLICATE);
//copyMakeBorder(img2, img2p, 0, 0, numberOfDisparities, 0, IPL_BORDER_REPLICATE); int64 t = getTickCount();
if( alg == STEREO_BM )
bm(img1, img2, disp);
else if( alg == STEREO_VAR ) {
var(img1, img2, disp);
}
else if( alg == STEREO_SGBM || alg == STEREO_HH )
sgbm(img1, img2, disp);
t = getTickCount() - t;
printf("Time elapsed: %fms\n", t*1000/getTickFrequency()); //disp = dispp.colRange(numberOfDisparities, img1p.cols);
if( alg != STEREO_VAR )
disp.convertTo(disp8, CV_8U, 255/(numberOfDisparities*16.));
else
disp.convertTo(disp8, CV_8U);
if( !no_display )
{
namedWindow("left", 1);
imshow("left", img1);
namedWindow("right", 1);
imshow("right", img2);
namedWindow("disparity", 0);
imshow("disparity", disp8);
printf("press any key to continue...");
fflush(stdout);
waitKey();
printf("\n");
} if(disparity_filename)
imwrite(disparity_filename, disp8); if(point_cloud_filename)
{
printf("storing the point cloud...");
fflush(stdout);
Mat xyz;
reprojectImageTo3D(disp, xyz, Q, true);
saveXYZ(point_cloud_filename, xyz);
printf("\n");
} return 0;
}

调试参数:

view_l.png view_r.png --algorithm=bm --blocksize=5 --max-disparity=256  --scale=1.0 --no-display -o disparity.bmp

立体匹配效果:

根据大牛的代码增加一个函数:实现视差数据保存成txt又matlab显示

void saveDisp(const char* filename, const Mat& mat)
{
FILE* fp = fopen(filename, "wt");
fprintf(fp, "%02d\n", mat.rows);
fprintf(fp, "%02d\n", mat.cols);
for(int y = 0; y < mat.rows; y++)
{
for(int x = 0; x < mat.cols; x++)
{
int disp = (int)mat.at<float>(y, x); // 这里视差矩阵是CV_16S 格式的,故用 short 类型读取
fprintf(fp, "%d\n", disp); // 若视差矩阵是 CV_32F 格式,则用 float 类型读取
}
//fprintf(fp, "\n");
}
fclose(fp);
}

matlab代码:

function img = txt2img(filename)
data = importdata(filename);
r = data(1); % 行数
c = data(2); % 列数
disp = data(3:end); % 视差
vmin = min(disp);
vmax = max(disp);
disp = reshape(disp, [c,r])'; % 将列向量形式的 disp 重构为 矩阵形式
% OpenCV 是行扫描存储图像,Matlab 是列扫描存储图像
% 故对 disp 的重新排列是首先变成 c 行 r 列的矩阵,然后再转置回 r 行 c 列
img = uint8( 255 * ( disp - vmin ) / ( vmax - vmin ) );
mesh(disp);
set(gca,'YDir','reverse'); % 通过 mesh 方式绘图时,需倒置 Y 轴方向
axis tight; % 使坐标轴显示范围与数据范围相贴合,去除空白显示区

  • 实现效果

  • 大牛博客中的解释

1. opencv2.1和opencv2.0在做stereo vision方面有什么区别了?

2.1版增强了Stereo Vision方面的功能:

(1) 新增了 SGBM 立体匹配算法(源自Heiko Hirschmuller的《Stereo Processing by Semi-global Matching and Mutual Information》),可以获得比 BM 算法物体轮廓更清晰的视差图(但低纹理区域容易出现横/斜纹路,在
GCstate->fullDP 选项使能时可消减这种异常纹路,但对应区域视差变为0,且运行速度会有所下降),速度比 BM 稍慢, 352*288的帧处理速度大约是 5 帧/秒;

(2) 视差效果:BM < SGBM < GC;处理速度:BM > SGBM > GC ;

(3) BM 算法比2.0版性能有所提升,其状态参数新增了对左右视图感兴趣区域 ROI 的支持(roi1 和 roi2,由stereoRectify函数产生);

(4) BM 算法和 GC 算法的核心代码改动不大,主要是面向多线程运算方面的(由 OpenMP 转向 Intel TBB);

(5) cvFindStereoCorrespondenceBM 函数的disparity参数的数据格式新增了 CV_32F 的支持,这种格式的数据给出实际视差,而 2.0 版只支持 CV_16S,需要除以 16.0 才能得到实际的视差数值。

2. 用于立体匹配的图像可以是彩色的吗?

在OpenCV2.1中,BM和GC算法只能对8位灰度图像计算视差,SGBM算法则可以处理24位(8bits*3)彩色图像。所以在读入图像时,应该根据采用的算法来处理图像:

int color_mode = alg == STEREO_SGBM ? 1 : 0;

//////////////////////////////////////////////////////////////////////////

// 载入图像

cvGrabFrame( lfCam );

cvGrabFrame( riCam );

frame1 = cvRetrieveFrame( lfCam );

frame2 = cvRetrieveFrame( riCam );

if(frame1.empty()) break;

resize(frame1, img1, img_size, 0, 0);

resize(frame2, img2, img_size, 0, 0);

// 选择彩色或灰度格式作为双目匹配的处理图像

if (!color_mode && cn>1)

{

cvtColor(img1, img1gray, CV_BGR2GRAY);

cvtColor(img2, img2gray, CV_BGR2GRAY);

img1p = img1gray;

img2p = img2gray;

}

else

{

img1p = img1;

img2p = img2;

}

3. 怎样获取与原图像有效像素区域相同的视差图?

OpenCV2.0及以前的版本中,所获取的视差图总是在左侧和右侧有明显的黑色区域,这些区域没有有效的视差数据。视差图有效像素区域与视差窗口(ndisp,一般取正值且能被16整除)和最小视差值(mindisp,一般取0或负值)相关,视差窗口越大,视差图左侧的黑色区域越大,最小视差值越小,视差图右侧的黑色区域越大。其原因是为了保证参考图像(一般是左视图)的像素点能在目标图像(右视图)中按照设定的视差匹配窗口匹配对应点,OpenCV
只从参考图像的第 (ndisp - 1 + mindisp) 列开始向右计算视差,第 0 列到第 (ndisp - 1 + mindisp) 列的区域视差统一设置为 (mindisp - 1) *16;视差计算到第 width + mindisp 列时停止,余下的右侧区域视差值也统一设置为 (mindisp - 1) *16

00177 static const int DISPARITY_SHIFT = 4;

00411 int ndisp = state->numberOfDisparities;
00412 int mindisp = state->minDisparity;
00413 int lofs = MAX(ndisp - 1 + mindisp, 0);
00414 int rofs = -MIN(ndisp - 1 + mindisp, 0);
00415 int width = left->cols, height = left->rows;
00416 int width1 = width - rofs - ndisp + 1;

00420 short FILTERED = (short)((mindisp - 1) << DISPARITY_SHIFT);

00466 // initialize the left and right borders of the disparity map
00467 for( y = 0; y < height; y++ )
00468 {
00469 for( x = 0; x < lofs; x++ )
00470 dptr[y*dstep + x] = FILTERED;
00471 for( x = lofs + width1; x < width; x++ )
00472 dptr[y*dstep + x] = FILTERED;
00473 }
00474 dptr += lofs;
00475
00476 for( x = 0; x < width1; x++, dptr++ ) …

这样的设置很明显是不符合实际应用的需求的,它相当于把摄像头的视场范围缩窄了。因此,OpenCV2.1 做了明显的改进,不再要求左右视图和视差图的大小(size)一致,允许对视差图进行左右边界延拓,这样,虽然计算视差时还是按上面的代码思路来处理左右边界,但是视差图的边界得到延拓后,有效视差的范围就能够与对应视图完全对应。具体的实现代码范例如下:

//////////////////////////////////////////////////////////////////////////
// 对左右视图的左边进行边界延拓,以获取与原始视图相同大小的有效视差区域
copyMakeBorder(img1r, img1b, 0, 0, m_nMaxDisp, 0, IPL_BORDER_REPLICATE);
copyMakeBorder(img2r, img2b, 0, 0, m_nMaxDisp, 0, IPL_BORDER_REPLICATE); //////////////////////////////////////////////////////////////////////////
// 计算视差
if( alg == STEREO_BM )
{
bm(img1b, img2b, dispb);
// 截取与原始画面对应的视差区域(舍去加宽的部分)
displf = dispb.colRange(m_nMaxDisp, img1b.cols);
}
else if(alg == STEREO_SGBM)
{
sgbm(img1b, img2b, dispb);
displf = dispb.colRange(m_nMaxDisp, img1b.cols);
}

4. cvFindStereoCorrespondenceBM的输出结果好像不是以像素点为单位的视差?

@scyscyao:在OpenCV2.0中,BM函数得出的结果是以16位符号数的形式的存储的,出于精度需要,所有的视差在输出时都扩大了16倍(2^4)。其具体代码表示如下:

dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp)*256 + (d != 0 ? (p-n)*128/d : 0) + 15) >> 4);

可以看到,原始视差在左移8位(256)并且加上一个修正值之后又右移了4位,最终的结果就是左移4位。

因此,在实际求距离时,cvReprojectTo3D出来的X/W,Y/W,Z/W都要乘以16 (也就是W除以16),才能得到正确的三维坐标信息。”

OpenCV2.1中,BM算法可以用 CV_16S 或者 CV_32F 的方式输出视差数据,使用32位float格式可以得到真实的视差值,而CV_16S 格式得到的视差矩阵则需要 除以16 才能得到正确的视差。另外,OpenCV2.1另外两种立体匹配算法SGBM 和 GC 只支持 CV_16S 格式的 disparity 矩阵

5. 如何设置BM、SGBM和GC算法的状态参数?

(1)StereoBMState

// 预处理滤波参数

  • preFilterType:预处理滤波器的类型,主要是用于降低亮度失真(photometric distortions)、消除噪声和增强纹理等, 有两种可选类型:CV_STEREO_BM_NORMALIZED_RESPONSE(归一化响应) 或者CV_STEREO_BM_XSOBEL(水平方向Sobel算子,默认类型), 该参数为 int 型;
  • preFilterSize:预处理滤波器窗口大小,容许范围是[5,255],一般应该在 5x5..21x21 之间,参数必须为奇数值, int 型
  • preFilterCap:预处理滤波器的截断值,预处理的输出值仅保留[-preFilterCap, preFilterCap]范围内的值,参数范围:1 - 31(文档中是31,但代码中是 63), int

// SAD 参数

  • SADWindowSize:SAD窗口大小,容许范围是[5,255],一般应该在 5x5 至 21x21 之间,参数必须是奇数,int 型
  • minDisparity:最小视差默认值为 0, 可以是负值,int 型
  • numberOfDisparities:视差窗口,即最大视差值与最小视差值之差, 窗口大小必须是 16 的整数倍,int 型

// 后处理参数

  • textureThreshold:低纹理区域的判断阈值。如果当前SAD窗口内所有邻居像素点的x导数绝对值之和小于指定阈值,则该窗口对应的像素点的视差值为 0(That is, if the sum of absolute values of x-derivatives computed over SADWindowSize by SADWindowSize pixel neighborhood is smaller than the parameter, no disparity
    is computed at the pixel),该参数不能为负值,int 型
  • uniquenessRatio:视差唯一性百分比, 视差窗口范围内最低代价是次低代价的(1 + uniquenessRatio/100)倍时,最低代价对应的视差值才是该像素点的视差,否则该像素点的视差为 0 (the minimum margin in percents between the best (minimum) cost function value and the second best value to accept the computed disparity,
    that is, accept the computed disparity d^ only if SAD(d) >= SAD(d^) x (1 + uniquenessRatio/100.) for any d != d*+/-1 within the search range ),该参数不能为负值,一般5-15左右的值比较合适,int 型
  • speckleWindowSize:检查视差连通区域变化度的窗口大小, 值为 0 时取消 speckle 检查,int 型
  • speckleRange:视差变化阈值,当窗口内视差变化大于阈值时,该窗口内的视差清零,int 型

// OpenCV2.1 新增的状态参数

  • roi1, roi2:左右视图的有效像素区域,一般由双目校正阶段的 cvStereoRectify 函数传递,也可以自行设定。一旦在状态参数中设定了 roi1 和 roi2,OpenCV 会通过cvGetValidDisparityROI 函数计算出视差图的有效区域,在有效区域外的视差值将被清零。
  • disp12MaxDiff:左视差图(直接计算得出)和右视差图(通过cvValidateDisparity计算得出)之间的最大容许差异。超过该阈值的视差值将被清零。该参数默认为 -1,即不执行左右视差检查。int 型。注意在程序调试阶段最好保持该值为 -1,以便查看不同视差窗口生成的视差效果。具体请参见《使用OpenGL动态显示双目视觉三维重构效果示例》一文中的讨论。

在上述参数中,对视差生成效果影响较大的主要参数是 SADWindowSize、numberOfDisparities 和 uniquenessRatio 三个,一般只需对这三个参数进行调整,其余参数按默认设置即可

在OpenCV2.1中,BM算法有C和C++ 两种实现模块。

(2)StereoSGBMState

SGBM算法的状态参数大部分与BM算法的一致,下面只解释不同的部分:

  • SADWindowSize:SAD窗口大小,容许范围是[1,11],一般应该在 3x3 至 11x11 之间,参数必须是奇数,int 型
  • P1, P2:控制视差变化平滑性的参数。P1、P2的值越大,视差越平滑。P1是相邻像素点视差增/减 1 时的惩罚系数;P2是相邻像素点视差变化值大于1时的惩罚系数。P2必须大于P1。OpenCV2.1提供的例程stereo_match.cpp 给出了 P1 和 P2 比较合适的数值
  • fullDP:布尔值,当设置为 TRUE 时,运行双通道动态编程算法(full-scale 2-pass dynamic programming algorithm),会占用O(W*H*numDisparities)个字节,对于高分辨率图像将占用较大的内存空间。一般设置为 FALSE

注意OpenCV2.1的SGBM算法是用C++ 语言编写的,没有C实现模块。与H. Hirschmuller提出的原算法相比,主要有如下变化:

  1. 算法默认运行单通道DP算法,只用了5个方向,而fullDP使能时则使用8个方向(可能需要占用大量内存)。
  2. 算法在计算匹配代价函数时,采用块匹配方法而非像素匹配(不过SADWindowSize=1时就等于像素匹配了)。
  3. 匹配代价的计算采用BT算法("Depth Discontinuities by Pixel-to-Pixel Stereo" by S. Birchfield and C. Tomasi),并没有实现基于互熵信息的匹配代价计算。
  4. 增加了一些BM算法中的预处理和后处理程序。

(3)StereoGCState

GC算法的状态参数只有两个:numberOfDisparities 和 maxIters ,并且只能通过 cvCreateStereoGCState 在创建算法状态结构体时一次性确定,不能在循环中更新状态信息。GC算法并不是一种实时算法,但可以得到物体轮廓清晰准确的视差图,适用于静态环境物体的深度重构。

注意GC算法只能在C语言模式下运行,并且不能对视差图进行预先的边界延拓,左右视图和左右视差矩阵的大小必须一致。

6. 如何实现视差图的伪彩色显示?

首先要将16位符号整形的视差矩阵转换为8位无符号整形矩阵,然后按照一定的变换关系进行伪彩色处理。我的实现代码如下:

// 转换为 CV_8U 格式,彩色显示
dispLfcv = displf, dispRicv = dispri, disp8cv = disp8;
if (alg == STEREO_GC)
{
cvNormalize( &dispLfcv, &disp8cv, 0, 256, CV_MINMAX );
}
else
{
displf.convertTo(disp8, CV_8U, 255/(m_nMaxDisp*16.));
}
F_Gray2Color(&disp8cv, vdispRGB);

灰度图转伪彩色图的代码,主要功能是使灰度图中 亮度越高的像素点,在伪彩色图中对应的点越趋向于 红色;亮度越低,则对应的伪彩色越趋向于 蓝色;总体上按照灰度值高低,由红渐变至蓝,中间色为绿色。其对应关系如下图所示:

图20

void F_Gray2Color(CvMat* gray_mat, CvMat* color_mat)
{
if(color_mat)
cvZero(color_mat); int stype = CV_MAT_TYPE(gray_mat->type), dtype = CV_MAT_TYPE(color_mat->type);
int rows = gray_mat->rows, cols = gray_mat->cols; // 判断输入的灰度图和输出的伪彩色图是否大小相同、格式是否符合要求
if (CV_ARE_SIZES_EQ(gray_mat, color_mat) && stype == CV_8UC1 && dtype == CV_8UC3)
{
CvMat* red = cvCreateMat(gray_mat->rows, gray_mat->cols, CV_8U);
CvMat* green = cvCreateMat(gray_mat->rows, gray_mat->cols, CV_8U);
CvMat* blue = cvCreateMat(gray_mat->rows, gray_mat->cols, CV_8U);
CvMat* mask = cvCreateMat(gray_mat->rows, gray_mat->cols, CV_8U); // 计算各彩色通道的像素值
cvSubRS(gray_mat, cvScalar(255), blue); // blue(I) = 255 - gray(I)
cvCopy(gray_mat, red); // red(I) = gray(I)
cvCopy(gray_mat, green); // green(I) = gray(I),if gray(I) < 128
cvCmpS(green, 128, mask, CV_CMP_GE ); // green(I) = 255 - gray(I), if gray(I) >= 128
cvSubRS(green, cvScalar(255), green, mask);
cvConvertScale(green, green, 2.0, 0.0); // 合成伪彩色图
cvMerge(blue, green, red, NULL, color_mat); cvReleaseMat( &red );
cvReleaseMat( &green );
cvReleaseMat( &blue );
cvReleaseMat( &mask );
}
}

7. 如何将视差数据保存为 txt 数据文件以便在 Matlab 中读取分析?

由于OpenCV本身只支持 xml、yml 的数据文件读写功能,并且其xml文件与构建网页数据所用的xml文件格式不一致,在Matlab中无法读取。我们可以通过以下方式将视差数据保存为txt文件,再导入到Matlab中。

void saveDisp(const char* filename, const Mat& mat)
{
FILE* fp = fopen(filename, "wt");
fprintf(fp, "%02d/n", mat.rows);
fprintf(fp, "%02d/n", mat.cols);
for(int y = 0; y < mat.rows; y++)
{
for(int x = 0; x < mat.cols; x++)
{
short disp = mat.at<short>(y, x); // 这里视差矩阵是CV_16S 格式的,故用 short 类型读取
fprintf(fp, "%d/n", disp); // 若视差矩阵是 CV_32F 格式,则用 float 类型读取
}
}
fclose(fp);
}

相应的Matlab代码为:

function img = txt2img(filename)
data = importdata(filename);
r = data(1); % 行数
c = data(2); % 列数
disp = data(3:end); % 视差
vmin = min(disp);
vmax = max(disp);
disp = reshape(disp, [c,r])'; % 将列向量形式的 disp 重构为 矩阵形式
% OpenCV 是行扫描存储图像,Matlab 是列扫描存储图像
% 故对 disp 的重新排列是首先变成 c 行 r 列的矩阵,然后再转置回 r 行 c 列
img = uint8( 255 * ( disp - vmin ) / ( vmax - vmin ) );
mesh(disp);
set(gca,'YDir','reverse'); % 通过 mesh 方式绘图时,需倒置 Y 轴方向
axis tight; % 使坐标轴显示范围与数据范围相贴合,去除空白显示区


科普一下,很好的stereo Vision 资料200多页的pdf:

http://www.vision.deis.unibo.it/smatt/Seminars/StereoVision.pdf

结合大牛的博客,好好学习下:

http://blog.csdn.net/chenyusiyuan/article/details/5967291

  • 需要注意的点

OpenCV自带的cvStereoCalibrate感觉不怎么好用,用这个函数求出的内参外参和旋转平移矩阵进行校准,往往无法达到行对准,有时甚至会出现比较可怕的畸变。在看了piao的http://www.opencv.org.cn/forum/viewtopic.php?f=1&t=4603帖子之后,也曾经尝试过现用cvCalibrateCamera2单独标定(左右各20幅图),得出的结果基本和Matlab单独标定的相同,然后再在cvStereoCalibrate中将参数设成CV_CALIB_USE_INTRINSIC_GUESS,用来细化内参数和畸变参数,结果得出的标定结果就又走样了。

不知道有谁在这方面有过成功经验的,可以出来分享一下。毕竟用Matlab工具箱还是麻烦了些。

参考:http://blog.lehu.shu.edu.cn/byman/A263366.html

OpenCV stereo matching 代码 matlab实现视差显示的更多相关文章

  1. OpenCV stereo matching BM 算法

    一直找不到opencv stereo matching的根据和原理出处,下面这个文章贴了个链接,有时间看看: Basically OpenCV provides 2 methods to calcul ...

  2. 快速高分辨率图像的立体匹配方法Effective large scale stereo matching

    <Effective large scale stereo matching> In this paper we propose a novel approach to binocular ...

  3. [学习笔记]编译sensetime发表的Single View Stereo Matching(SVS)遇到的问题

    最近在研究用深度学习预测图像深度信息的方法,一开始用的是2017年CVPR上Godard大神的monodepth,代码在这里.这篇文章介绍了利用双目的consistency训练网络以对单张图像进行深度 ...

  4. 基于MST的立体匹配及相关改进(A Non-Local Cost Aggregation Method for Stereo Matching)

    怀着很纠结的心情来总结这篇论文,这主要是因为作者提虽然供了源代码,但是我并没有仔细去深究他的code,只是把他的算法加进了自己的项目.希望以后有时间能把MST这一结构自己编程实现!! 论文题目是基于非 ...

  5. Segment-Based stereo matching

    首先代码实现是根据"Segment-Based Stereo Matching Using Belief Propogation and Self-Adapting Dissimilarit ...

  6. 论文解析 "A Non-Local Cost Aggregation Method for Stereo Matching"

    传统的使用窗口的方法缺陷主要在 1.窗口外的像素不能参与匹配判断. 2.在低纹理区域很容易产生错误匹配 论文的主要贡献在代价聚类上(左右图像带匹配点/区域的匹配代价计算),目标是图像内所有点都对该点传 ...

  7. 学习《Hardware-Efficient Bilateral Filtering for Stereo Matching》一文笔记。

    个人收藏了很多香港大学.香港科技大学以及香港中文大学里专门搞图像研究一些博士的个人网站,一般会不定期的浏览他们的作品,最近在看杨庆雄的网点时,发现他又写了一篇双边滤波的文章,并且配有源代码,于是下载下 ...

  8. opencv从txt文本读取像素点并显示

    opencv从txt文本读取像素点并显示 文本储存格式为每行一个像素点,排列为RGB.每帧图像的帧头为65535.  如下图所示 废话不多说,代码如下: // #include <iostrea ...

  9. opencv通过dll调用matlab函数,图片作为参数

    [blog 项目实战派]opencv通过dll调用matlab函数,图片作为参数                   前文介绍了如何“csharp通过dll调用opencv函数,图片作为参数”.而在实 ...

随机推荐

  1. Xcode的playground中对于SpriteKit物理对象的更新为何无效

    大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请多提意见,如果觉得不错请多多支持点赞.谢谢! hopy ;) 为了便于SpriteKit中物理行为的调试,我们可以借助于Xc ...

  2. Web服务,XFire的一个例子

    Web服务优点 互操作性:实现不同系统间的相互调用(语言无关.平台无关) Web服务是什么 Web 服务是一类应用程序,是能够用编程的方法通过Web调用来实现某个功能的应用程序 Web服务的体系结构 ...

  3. 返回present的根

    //返回四大tab页面 + (void)gobackToTabarController { UINavigationController* selectedTabNavController = (UI ...

  4. 学习TensorFlow,concat连接两个(或多个)通道

    深度学习中,我们经常要使用的技术之一,连接连个通道作为下一个网络层的输入,那么在tensorflow怎么来实现呢? 我查看了tensorflow的API,找到了这个函数: tf.concat(conc ...

  5. 【java线程系列】java线程系列之java线程池详解

    一线程池的概念及为何需要线程池: 我们知道当我们自己创建一个线程时如果该线程执行完任务后就进入死亡状态,这样如果我们需要在次使用一个线程时得重新创建一个线程,但是线程的创建是要付出一定的代价的,如果在 ...

  6. [java面试]逻辑推理6 10 18 32 下一个数?编程实现输入任意一个N位置,该数是多少?java实现

    题目: 6 10 18 32 下一个数?编程实现输入任意一个N位置,该数是多少? 10 = 6 + 4         4 18 = 10 + 8        4 + 4  32 = 18 + 14 ...

  7. How to Find the Self Service Related File Location and Versions

     How to Find the Self Service Related File Location and Versions (文档 ID 781385.1) In this Document ...

  8. 03 SeekBar 音频播放拖拽进度条

    八,  SeekBar  音频播放拖拽进度条       >                 android:progress="40"   第一进度         and ...

  9. Android官方命令深入分析之dmtracedump

    dmtracedump是一个根据log文件生成图形化调用堆栈的工具(除了Traceview之外). dmtracedump的用法: dmtracedump [-ho] [-s sortable] [- ...

  10. UNIX环境高级编程——pthread_create的问题

    linux 下常用的创建多线程函数pthread_create(pthread_t * thread , pthread_attr_t * attr , void *(*start_routine)( ...