题目描述

随着iPig在P++语言上的造诣日益提升,他形成了自己一套完整的代码库。猪王国想参加POI的童鞋们都争先恐后问iPig索要代码库。iPig不想把代码库给所有想要的小猪,只想给其中的一部分既关系好又肯出钱的小猪,于是他决定举行了一个超大型拍卖会。

在拍卖会上,所有的N头小猪将会按照和iPig的好感度从低到高,从左到右地在iPig面前站成一排。每个小猪身上都有9猪币(与人民币汇率不 明),从最左边开始,每个小猪依次举起一块牌子,上面写上想付出的买代码库的猪币数量(1到9之间的一个整数)。大家都知道,如果自己付的钱比左边的猪 少,肯定得不到梦寐以求的代码库,因此从第二只起,每只猪出的钱都大于等于左边猪出的价钱。最终出的钱最多的小猪(们)会得到iPig的代码库真传,向着 保送PKU(Pig Kingdom University)的梦想前进。

iPig对自己想到的这个点子感到十分满意,在去现场的路上,iPig就在想象拍卖会上会出现的场景,例如一共会出现多少种出价情况之类的问题,但 这些问题都太简单了,iPig早已不敢兴趣了,他想要去研究更加困难的问题。iPig发现如果他从台上往下看,所有小猪举的牌子从左到右将会正好构成一个 N位的整数,他现在想要挑战的问题是所有可能构成的整数中能正好被P整除的有多少个。由于答案过大,他只想要知道答案mod 999911659就行了。

输入输出格式

输入格式:

输入文件auction.in有且仅有一行:两个数N(1≤N≤10^18)、P(1≤P≤500),用一个空格分开。

输出格式:

输入文件auction.out有且仅有一行:一个数,表示答案除以999911659的余数。

输入输出样例

输入样例#1:

2 3
输出样例#1:

15

说明

样例解释

方案可以是:12 15 18 24 27 33 36 39 45 48 57 66 69 78 99,共15种。

数据规模

给定N,P,有一个数A是N位数,并且A的每一位不减(如11234)并且不超过9,求能被P整除的数有多少个。

分 析:首先我们注意到N非常大,O(N)绝对不能接受,但是P只有500,而且A这个数有非常奇妙的性质:由于A的每一位不减,所以可以将A拆成 0,1,11,111,1111,11111……中取九个的和(如11234=11111+111+11+1+0+0+0+0+0),这样一来,由于 11…111 mod P会出现循环,就可以将N从复杂度中消去,记Cnt[i]表示0,1,11……中mod P 为i的个数(0 <= I < P),题目就变成了从Cnt[i]中取九个使下标之和被P整除;
于是可以容易的想到动态规划,F[i][j][k]表示做到Cnt[i],当前取了k个,k个的和mod P为j,转移方程就是
F[i + 1][(j + l * i) % P][k + l] = (F[i][j][k] * Calc(l, Cnt[i]) + F[i + 1][(j + l * i) % P][k + l]) % mod;(枚举l)
其中Calc(l, Cnt[i])表示Cnt[i]中无差别的取出l个(可以重复)的方案数,根据排列组合的定理可知Calc(A, B) = C(A+B-1,A) 
复杂度:O(P*P*9*9)
记得最后的数还要加上111...11(n个1).因为在DP的时候这个数是可以有前导0的。
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
lol Mod=,ans;
lol n,p,cnt[],beg,len,pos[],A[],c[][],f[][][],a;
int main()
{lol i,j,k,l;
cin>>n>>p;
lol sum=;
if (n<=p)
{
for (i=;i<=n;i++)
{
sum=sum*+;
sum%=p;
cnt[sum]++;
}
a=sum;
}
else
{
for (i=;i<=p+;i++)
{
sum=sum*+;
sum%=p;
if (cnt[sum])
{
beg=pos[sum];
len=i-pos[sum];
break;
}
cnt[sum]++;
pos[sum]=i;
}
for (i=;i<p;i++)
if (cnt[i]&&pos[i]>=beg)
{
cnt[i]=(n-beg+)/len;
if (pos[i]-beg+<=(n-beg+)%len) cnt[i]++;
if ((pos[i]-beg+)%len==(n-beg+)%len) a=i;
}
}
A[]=;
for (i=;i<=;i++)
A[i]=(Mod-Mod/i)*A[Mod%i]%Mod;
for (i=;i<p;i++)
{
c[i][]=;
if (cnt[i])
for (j=;j<=;j++)
{
c[i][j]=(cnt[i]*c[i][j-]%Mod)*A[j]%Mod;
cnt[i]++;cnt[i]%=Mod;
}
}
f[][a][]=;
for (i=;i<p;i++)
{
for (j=;j<p;j++)
{
for (k=;k<;k++)
{
for (l=;l<=k;l++)
{
f[i+][j][k]+=f[i][(j-(l*i%p)+p)%p][k-l]*c[i][l]%Mod;
f[i+][j][k]%=Mod;
//cout<<i+1<<' '<<j<<' '<<k<<' '<<l<<' '<<f[i+1][j][k]<<endl;
}
}
}
}
for (i=;i<=;i++)
ans+=f[p][][i],ans%=Mod;
cout<<ans;
}

[SDOI2010]代码拍卖会的更多相关文章

  1. SDOI2010代码拍卖会 (计数类DP)

    P2481 SDOI2010代码拍卖会 $ solution: $ 这道题调了好久好久,久到都要放弃了.洛谷的第五个点是真的强,简简单单一个1,调了快4个小时! 这道题第一眼怎么都是数位DP,奈何数据 ...

  2. bzoj 1974: [Sdoi2010]代码拍卖会

    Description 随着iPig在P++语言上的造诣日益提升,他形成了自己一套完整的代 码库.猪王国想参加POI的童鞋们都争先恐后问iPig索要代码库.iPi g不想把代码库给所有想要的小猪,只想 ...

  3. [BZOJ1974][SDOI2010]代码拍卖会[插板法]

    题意 询问有多少个数位为 \(n\) 的形如 \(11223333444589\) 的数位值不下降的数字在\(\mod p\) 的意义下同余 \(0\). $n\leq 10^{18} ,p\leq ...

  4. 洛谷 P2481 [SDOI2010]代码拍卖会

    洛谷 这大概是我真正意义上的第一道黑题吧! 自己想出了一个大概,状态转移方程打错了一点点,最后还是得看题解. 一句话题意:求出有多少个\(n\)位的数,满足各个位置上的数字从左到右不下降,且被\(p\ ...

  5. [SDOI2010]代码拍卖会——DP

    原题戳这里 绝对是一道好题 需要注意到两个东西 1.符合条件的数可以拆成一堆\(11...11\)相加的形式,比如\(1145=1111+11+11+11+1\) 2.\(1,11,111,1111, ...

  6. Luogu2481 SDOI2010 代码拍卖会 DP、组合

    传送门 神仙DP 注意到\(N \leq 10^{18}\),不能够直接数位DP,于是考虑形成的\(N\)位数的性质. 因为低位一定不会比高位小,所以所有满足条件的\(N\)位数一定是不超过\(9\) ...

  7. luogu P2481 [SDOI2010]代码拍卖会

    luogu 题目中的那个大数一定是若干个1+若干个2+若干个3...+若干个9组成的,显然可以转化成9个\(\underbrace {111...1}_{a_i个1}(0\le a_1\le a_2\ ...

  8. 洛谷 P2481 [SDOI2010]代码拍卖会(背包+隔板法)

    题面传送门 题意: 给出 \(n,p\),求有多少 \(n\) 位数 \(X=a_1a_2a_3\dots a_n\) 满足: 该 \(n\) 位数不含前导零 \(a_i \leq a_{i+1}\) ...

  9. BZOJ 1974: [Sdoi2010]auction 代码拍卖会( dp )

    在1, 11, 111……中选<=8个, + 11..(n个1)拼出所有可能...这些数mod p至多有p中可能, 找出循环的处理一下. 那么dp就很显然了...dp(i, j, k)表示前i种 ...

随机推荐

  1. Alpha冲刺集合

    Alpha冲刺集合 Day1 http://www.cnblogs.com/bugLoser/p/7901016.html Day2 http://www.cnblogs.com/bugLoser/p ...

  2. Twisted 使用多线程

    Twisted 提供主线程和辅线程,主线程只有1个,即reactor.run(),辅线程有多个,可以自由配置 Twisted 大多数代码运行在主线程中,dataReceived(),connectio ...

  3. RxSwift(一)

    文/iOS_Deve(简书作者) 原文链接:http://www.jianshu.com/p/429b5160611f 著作权归作者所有,转载请联系作者获得授权,并标注"简书作者" ...

  4. 第一周-JAVA基本概念

    1. 本周学习总结 本周学习内容: 1.JAVA的发展 2.JDK,JVM,JRE, 3.掌握JAVA的组成结构 4.掌握使用简单的编译器写javac与java命令, 关键概念之间的联系: JVM:将 ...

  5. poj 2142 The Balance

    The Balance http://poj.org/problem?id=2142 Time Limit: 5000MS   Memory Limit: 65536K       Descripti ...

  6. 09-TypeScript中的继承

    在后端开发语言中,继承是非常重要的概念,继承可以让子类具有父类的成员和方法,通过实例化子类,就可以访问父类的成员和方法. 在JavaScript中,需要通过原型模式来模拟继承的实现.而在TypeScr ...

  7. mongodb监控工具mongostat

    mongostat的使用及命令详解 mongostat是mongodb自带的状态检测工具,在命令行下使用,会间隔固定时间获取mongodb的当前运行状态,并输出. 1.常用命令格式: mongosta ...

  8. JAVA_SE基础——9.基本数据类型间的转换

    前面我已经教会大家基本的数据类型进行了介绍,   然后这篇文章,我来介绍下,基本数据类型的转换. Java中有两种类型转换形式,分别是自动类型转换和强制类型转换. Step1.自动类型转换. 自动类型 ...

  9. php网上支付易宝

    巴巴运动网是通过易宝向招商银行打钱,这个首先易宝是需要审核巴巴运动网的钱来的是否正当不然易宝就成了一个洗钱的工具,这个是犯法的:因为钱的来路不明!财政部是需要抓起来的!所以钱的流向实际上是用户的招商银 ...

  10. PHP trait

    ps:由于PHP是单继承的,无法继承多个类所以可以用triat(关键字,特性)来命名达到子类继承多个父类的效果:暂且理解为类吧.class = trait <?php trait A { pub ...