Description

JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。

JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任

何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。

例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的

分配方法:

A:麻花,B:麻花、包子

A:麻花、麻花,B:包子

A:包子,B:麻花、麻花

A:麻花、包子,B:麻花

解题报告:

用时:2h,1WA

首先要想到容斥,那么总方案是什么?对于每一种物品分给N个同学,那么就是可重组合\(C(n+a[i]-1,a[i])\),然后再将每一个物品分给同学的方案相乘,但是可重组合公式中的方案并不保证每一个位置都有至少一个,所以我们要减去不合法方案,也就是存在有空位的方案,根据容斥原理:减去一个空位的,再加上两个空位的,再减去三个空位的,加上四个空位的.....,注意有\(i\)个空位的方案还需要乘上\(C(n,i)\),因为空位可以是任意位置

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=1005,mod=1000000007;
int a[N],n,m;ll c[N<<1][N<<1];
void work()
{
int mx=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d",&a[i]);
mx=Max(a[i],mx);
}
mx+=n;
for(int i=0;i<=mx;i++){
c[i][0]=1;
for(int j=1;j<=i;j++){
c[i][j]=c[i-1][j-1]+c[i-1][j];
if(c[i][j]>=mod)c[i][j]-=mod;
}
}
ll ans=1,tmp;
for(int i=1;i<=m;i++){
ans*=c[a[i]+n-1][a[i]];
ans%=mod;
}
int t=-1;
for(int i=1;i<n;i++){
tmp=1;
for(int j=1;j<=m;j++){
tmp*=c[a[j]+n-i-1][a[j]];
tmp%=mod;
}
tmp=tmp*c[n][i]%mod;
ans+=tmp*t;ans=((ans%mod)+mod)%mod;
t*=-1;
}
printf("%lld\n",ans);
} int main()
{
work();
return 0;
}

bzoj 4710: [Jsoi2011]分特产的更多相关文章

  1. BZOJ 4710: [Jsoi2011]分特产 [容斥原理]

    4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...

  2. BZOJ 4710 [Jsoi2011]分特产 解题报告

    4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...

  3. ●BZOJ 4710 [Jsoi2011]分特产

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...

  4. BZOJ 4710: [Jsoi2011]分特产(容斥)

    传送门 解题思路 首先所有物品是一定要用完的,那么可以按照物品考虑,就是把每种物品分给\(n\)个人,每个人分得非负整数,可以用隔板法计算.设物品有\(m\)个,方案数为\(C(n+m-1,n-1)\ ...

  5. 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 99  Solved: 65 Description JYY 带 ...

  6. 4710: [Jsoi2011]分特产

    4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...

  7. bzoj4710: [Jsoi2011]分特产 组合+容斥

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 289  Solved: 198[Submit][Status] ...

  8. bzoj4710 [Jsoi2011]分特产(容斥)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 814  Solved: 527[Submit][Status] ...

  9. [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 262[Submit][Status] ...

随机推荐

  1. Visual Studio 开发工具常用的插件

    转载自落日故乡  http://www.spersky.com/post/vsPlugins.html 该博客中收集整理归纳了若干个常用的vs插件,比如高亮显示当前选择,垂直辅助线,折叠代码等等,具体 ...

  2. php析构方法

    析构方法说明: 1. 析构方法会自动调用 2. 析构方法主要用于销毁资源(比如释放数据库的链接,图片资源...销毁某个对象..); 析构函数会在到对象的所有的引用都被删除或者当对象被显示销毁时执行. ...

  3. dede观看总结自己总结

    知识点一:{dede:arclist channelid="18" addfields="language,pfz" limit="0,5" ...

  4. Spring源码情操陶冶#task:scheduled-tasks解析器

    承接前文Spring源码情操陶冶#task:executor解析器,在前文基础上解析我们常用的spring中的定时任务的节点配置.备注:此文建立在spring的4.2.3.RELEASE版本 附例 S ...

  5. python 字符串的方法

    capitalize() 把字符串的第一个字符改为大写 casefold() 把整个字符串的所有字符改为小写 center(width) 将字符串居中,并使用空格填充至长度 width 的新字符串 c ...

  6. httpClient解决post请求重定向的问题

    import com.dadi.saas.util.HTTPUtils; import org.apache.commons.httpclient.Header; import org.apache. ...

  7. C++ 排列最优解算法思想

    枚举全排列 #include <iostream> #include <cstring> #include <string> using namespace std ...

  8. Python基础-用户验证

    一.项目需求 1.根据用户名和密码,验证用户是否可登陆 2.允许一次执行可验证三次 3.当用户名输错三次后,该用户名锁定,永久不可登陆 二.代码如下 #!/usr/bin/env python #-* ...

  9. hdu-1082 Matrix Chain Multiplication---栈的运用

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1082 题目大意: 题意大致是N个矩阵,如果要求计算的矩阵例如(AB),如果A的列等于B的行,进行:A ...

  10. Maven 私服的简单使用

    所有的 Java 开发者应该是没有没用过 Maven 的吧.Maven 作为 Java 项目管理工具,它不仅可以用作包管理,还有许多的插件,可以支持整个项目的开发.打包.测试.部署等一系列行为.而包管 ...