终于抽出时间来学了学,比FFT不知道好写到哪里去。

#include <cstdio>

typedef long long ll;
const int N=,p=1e9+;
int k,m,n,a[N],pi[N];
bool pr(int x) {for(int i=;i*i<=x;i++) if(x%i==) return ; return ;}
ll pw(ll a,int b) {ll r=; for(;b;b>>=,a=a*a%p) if(b&) r=r*a%p; return r;} void fwt(int *a,ll f) {
for(int i=,x,y;i<n;i<<=) for(int j=;j<n;j+=i<<) for(int k=;k<i;k++)
x=a[j+k],y=a[j+k+i],a[j+k]=(x+y)*f%p,a[j+k+i]=(x-y+p)*f%p;
} int main() {
for(int i=;i<;i++) if(pr(i)) pi[i]=;
while(~scanf("%d%d",&k,&m)) {
for(n=;n<=m;n<<=);
for(int i=;i<=m;i++) a[i]=pi[i];
for(int i=m+;i<n;i++) a[i]=;
fwt(a,);
for(int i=;i<n;i++) a[i]=pw(a[i],k);
fwt(a,),printf("%d\n",a[]);
}
return ;
}

BZOJ4589 Hard Nim(快速沃尔什变换模板)的更多相关文章

  1. LG4717 【模板】快速沃尔什变换

    题意 题目描述 给定长度为\(2^n\)两个序列\(A,B\),设\(C_i=\sum_{j\oplus k}A_jB_k\)分别当\(\oplus\)是or,and,xor时求出C 输入输出格式 输 ...

  2. Fast Walsh-Hadamard Transform——快速沃尔什变换

    模板题: 给定$n = 2^k$和两个序列$A_{0..n-1}$, $B_{0..n-1}$,求 $$C_i = \sum_{j \oplus k = i} A_j B_k$$ 其中$\oplus$ ...

  3. [学习笔记]FWT——快速沃尔什变换

    解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...

  4. 快速沃尔什变换(FWT)学习笔记

    概述 FWT的大体思路就是把要求的 C(x)=A(x)×B(x)  即 \( c[i]=\sum\limits_{j?k=i} (a[j]*b[k]) \) 变换成这样的:\( c^{'}[i]=a^ ...

  5. 初学FWT(快速沃尔什变换) 一点心得

    FWT能解决什么 有的时候我们会遇到要求一类卷积,如下: Ci=∑j⊕k=iAj∗Bk\large C_i=\sum_{j⊕k=i}A_j*B_kCi​=j⊕k=i∑​Aj​∗Bk​此处乘号为普通乘法 ...

  6. 关于快速沃尔什变换(FWT)的一点学习和思考

    最近在学FWT,抽点时间出来把这个算法总结一下. 快速沃尔什变换(Fast Walsh-Hadamard Transform),简称FWT.是快速完成集合卷积运算的一种算法. 主要功能是求:,其中为集 ...

  7. FWT快速沃尔什变换学习笔记

    FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...

  8. 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记

    一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...

  9. 89. a^b【快速幂模板】

    a^b Description 求 aa 的 bb 次方对 pp 取模的值. 输入格式 三个整数 a,b,pa,b,p ,在同一行用空格隔开. 输出格式 输出一个整数,表示a^b mod p的值. 数 ...

随机推荐

  1. 第二篇:Python数据类型

    一.引子 1.什么是数据? x= #是我们要存储的数据 2.为何数据要分不同的类型 数据是用来表示状态的,不同的状态就应该用不同的类型的数据去表示 3.数据类型 数字(整型,长整型,浮点型,复数) 字 ...

  2. 山西某公司NetApp存储不小心删除文件数据恢复成功案例

    故障情况简介: 需要进行数据恢复的设备是一台NetApp存储,共有24块磁盘组成.由于管理员删除文件夹,且时间比较久,删除有几个月时间. 可恢复性判断:由于NetApp中的文件系统的特性,WAFL是& ...

  3. .net 小程序获取用户UnionID

    第一次写博客,写的不好多多海涵! 1.小程序获取UnionID的流程用code去换取session_key,然后去解密小程序获取到的那串字符! 话不多说,原理大家都懂!!!!!! 直接上代码 publ ...

  4. 解决vue2.0路由 TypeError: Cannot read property 'matched' of undefined 的错误问题

    刚开始使用vue-router2.0,虽然也用了vux,用起来却发现一个问题--具体如下: 正常情况下使用脚手架跑完之后,然后修改源项目,首先在main.js入口里把该import进去的vuex,vu ...

  5. auto_prepend_file与auto_append_file使用方法

    auto_prepend_file与auto_append_file使用方法 如果需要将文件require到所有页面的顶部与底部. 第一种方法:在所有页面的顶部与底部都加入require语句. 例如: ...

  6. 用Vue.js开发微信小程序:开源框架mpvue解析

    前言 mpvue 是一款使用 Vue.js 开发微信小程序的前端框架.使用此框架,开发者将得到完整的 Vue.js 开发体验,同时为 H5 和小程序提供了代码复用的能力.如果想将 H5 项目改造为小程 ...

  7. python 面向对象之多态与绑定方法

    多态与多态性 一,多态 1,多态指的是一类事物有多种形态(python里面原生多态) 1.1动物有多种形态:人,狗,猪 import abc class Animal(metaclass=abc.AB ...

  8. JAVA 中一个非常轻量级只有 200k 左右的 RESTful 路由框架

    ICEREST 是一个非常轻量级只有 200k 左右的 RESTful 路由框架,通过 ICEREST 你可以处理 url 的解析,数据的封装, Json 的输出,和传统的方法融合,请求的参数便是方法 ...

  9. linux下的Shell编程(8)自定义函数

    Shell Script中也可以使用自定义的函数,其语法形式如下: functionname() { - }

  10. Spark-1.X编译构建及配置安装

    前提条件(环境要求) jdk版本:1.7+ scala版本:1.10.4+ maven版本:3.3.3+ 本博客中使用的软件版本 spark版本:spark-1.6.1.tar.gz(源码) jdk版 ...