Segment

 Accepts: 418
 Submissions: 2020
 Time Limit: 2000/1000 MS (Java/Others)
 Memory Limit: 65536/65536 K (Java/Others)
问题描述
\ \ \ \    Rivendell非常神,喜欢研究奇怪的问题.

\ \ \ \    今天他发现了一个有趣的问题.找到一条线段x+y=qx+y=q,令它和坐标轴在第一象限围成了一个三角形,然后画线连接了坐标原点和线段上坐标为整数的格点.

\ \ \ \    请你找一找有多少点在三角形的内部且不是线段上的点,并将这个个数对PP取模后告诉他.
输入描述
\ \ \ \    第一行一个数T,为测试数据组数.

\ \ \ \    接下来每一行两个数qq,PP,意义如题目中所示.

\ \ \ \ q    q是质数且q\le 10^{18},1\le P\le 10^{18},1\le T \le 10q≤10​18​​,1≤P≤10​18​​,1≤T≤10.
输出描述
\ \ \ \    对每组数据,输出点的个数模PP后的值.
输入样例
1
2 107
输出样例
0

官方解:

考虑一条以(0,0)(0,0)为起点,(x,y)(x,y)为终点的线段上格点的个数(不包含端点时),一定是gcd(x,y)-1gcd(x,y)−1,这个很显然吧.

然后整个网格图范围内的格点数目是\frac
{q*(q-1)} 2​2​​q∗(q−1)​​.

所以答案就是\frac
{q*(q-1)} 2 -​2​​q∗(q−1)​​− 所有线段上的格点的个数.

因为gcd(a,b)=gcd(a,b-a)\
(b>a)gcd(a,b)=gcd(a,b−a) (b>a),所以gcd(x,y)=gcd(x,p-x)=gcd(x,p)gcd(x,y)=gcd(x,p−x)=gcd(x,p),p是质数,所以gcd(x,y)=1gcd(x,y)=1,所以线段上都没有格点,所以答案就是\frac
{q*(q-1)} 2​2​​q∗(q−1)​​.

因为数据比较大,所以用的java.当然也可以考虑按位乘

import java.io.BufferedInputStream;
import java.math.BigInteger;
import java.util.Scanner; public class Main { public static void main(String[] args) {
// TODO 自动生成的方法存根
Scanner cin = new Scanner (new BufferedInputStream(System.in));
int T;
BigInteger c; BigInteger d;
T = cin.nextInt();
while(T > 0){
c = cin.nextBigInteger();
d = cin.nextBigInteger();
BigInteger a = c.subtract(BigInteger.valueOf(2));
if(a.equals(BigInteger.valueOf(0)))
{
System.out.println(0);
}
else{
c = a.add(BigInteger.valueOf(1));
//system.out.println(c);
a = c.multiply(a);
//System.out.println(a);
a = a.divide(BigInteger.valueOf(2));
a = a.remainder(d);
System.out.println(a);
}
T--;
}
}
}

  

hdu5666 BestCoder Round #80的更多相关文章

  1. hdu 5667 BestCoder Round #80 矩阵快速幂

    Sequence  Accepts: 59  Submissions: 650  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 65536 ...

  2. BestCoder Round #80 1002

    HDU 5666 Segment 题意:给你条斜率为-1,常数项为q(q为质数)的直线,连接原点与直线上整数格点,问你在有多少个格点在形成的无数个三角形内,而不在线段上,结果对P取模. 思路:best ...

  3. Bestcoder Round# 80

    [1003 Sequence] 指数循环节,注意a mod p = 0的情况.此时你的循环节如果返回0,这时你会输出1,而实际上应该是0 #include <algorithm> #inc ...

  4. BestCoder Round #80 待填坑

    Lucky Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  5. hdoj5667 BestCoder Round #80 【费马小定理(膜拜)+矩阵快速幂+快速幂】

    #include<cstdio> #include<string> #include<iostream> #include<vector> #inclu ...

  6. bestcoder Round #7 前三题题解

    BestCoder Round #7 Start Time : 2014-08-31 19:00:00    End Time : 2014-08-31 21:00:00Contest Type : ...

  7. hdu5634 BestCoder Round #73 (div.1)

    Rikka with Phi  Accepts: 5  Submissions: 66  Time Limit: 16000/8000 MS (Java/Others)  Memory Limit: ...

  8. hdu 4956 Poor Hanamichi BestCoder Round #5(数学题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4956 Poor Hanamichi Time Limit: 2000/1000 MS (Java/Ot ...

  9. BestCoder Round #89 02单调队列优化dp

    1.BestCoder Round #89 2.总结:4个题,只能做A.B,全都靠hack上分.. 01  HDU 5944   水 1.题意:一个字符串,求有多少组字符y,r,x的下标能组成等比数列 ...

随机推荐

  1. Flask 扩展 缓存

    如果同一个请求会被多次调用,每次调用都会消耗很多资源,并且每次返回的内容都相同,就该使用缓存了 自定义缓存装饰器 在使用Flask-Cache扩展实现缓存功能之前,我们先来自己写个视图缓存装饰器,方便 ...

  2. 关于安装win7系统时出现0x0000007b电脑蓝屏代码的问题

    问题解析: 0X0000007B 这个错误网上都说是sata硬盘的什么引导模式的原因引起. 在网上查找了很久,大概引起错误的原因就是:sata和ide两种模式不同,前者可以装win7系统,后者是xp系 ...

  3. 我所知道的window.location

    多说无益 直接上干货 假如一个地址为  http://127.0.0.1:5000/index.html?id=4 window.location.href -- 完整路径 -- http://127 ...

  4. SpringMVC之数据传递一

    之前的博客中也说了,mvc中数据传递是最主要的一部分,从url到Controller.从view到Controller.Controller到view以及Controller之间的数据传递.今天主要学 ...

  5. 算法题丨Two Sum

    描述 Given an array of integers, return indices of the two numbers such that they add up to a specific ...

  6. 用C#(.NET Core) 实现简单工厂和工厂方法模式

    本文源自深入浅出设计模式. 只不过我是使用C#/.NET Core实现的例子. 前言 当你看见new这个关键字的时候, 就应该想到它是具体的实现. 这就是一个具体的类, 为了更灵活, 我们应该使用的是 ...

  7. GIT入门笔记(6)- 向版本库添加文本文件

    1.把文本文件添加到版本库? 所有的版本控制系统,其实只能跟踪文本文件的改动,比如TXT文件,网页,所有的程序代码等等,Git也不例外. 版本控制系统可以告诉你每次的改动,比如在第5行加了一个单词&q ...

  8. python入门(2)python的安装

    python入门(2)python的安装 Python是跨平台的,可以运行在Windows.Mac和各种Linux/Unix系统上. 2.x还是3.x Python有两个版本,一个是2.x版,一个是3 ...

  9. Django中ORM介绍和字段及其参数

    ORM介绍 ORM概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术. 简单的说,ORM是通过使用描述 ...

  10. 百度echarts使用--y轴label数字太长难以全部显示

    问题: 今天遇到个小问题,我们系统前端呈现使用了百度echarts.在绘制折线图的时候,因为数字过大,导致显示出现了问题. 解决方案: 左边y轴的值默认是根据我们填充进去的值来默认分割的,因为原始值就 ...