bzoj 2118: 墨墨的等式
Description
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N、{an}、以及B的取值范围,求出有多少B可以使等式存在非负整数解。
Solution
选择任意一个正整数\(a_i\),作为 \(x*a_i\) 的底数,然后假如我们知道了最小满足 \(B \% a_i=k\) 的 \(B\),那么大于 \(B\) 的满足与 \(B\) 同余的也一定能够凑出来
所以我们只需要对于每一个余数,求出 \(dis[i]\) 表示用 \(a_1....a_n\) 能够凑出的满足 \(B%a_i=i\) 的最小的 \(B\) 为多少
然后对于每一个剩余类,分别算答案即可,可以保证不重不漏
最后答案就是 \(solve(BMax)-solve(BMin-1)\) 了
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=15;
int n,a[N],p=1;ll L,R,dis[500005];
queue<int>Q;bool vis[500005];
inline void spfa(){
for(int i=0;i<a[p];i++)dis[i]=1e13;
dis[0]=0;vis[0]=1;Q.push(0);
while(!Q.empty()){
int x=Q.front();Q.pop();
for(int i=1;i<=n;i++){
int u=(x+a[i])%a[p];
if(dis[x]+a[i]<dis[u]){
dis[u]=dis[x]+a[i];
if(!vis[u])vis[u]=1,Q.push(u);
}
}
vis[x]=0;
}
}
inline ll calc(ll x,int k){
return (x-k)/a[p]+1;
}
inline ll solve(ll mid){
ll ret=0;
for(int i=0;i<a[p];i++)
if(dis[i]<=mid)ret+=calc(mid,i)-calc(dis[i]-1,i);
return ret;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
scanf("%d%lld%lld",&n,&L,&R);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
sort(a+1,a+n+1);
if(a[n]==0){puts("0");return 0;}
while(!a[p])p++;spfa();
printf("%lld\n",solve(R)-solve(L-1));
return 0;
}
bzoj 2118: 墨墨的等式的更多相关文章
- 【BZOJ 2118】 墨墨的等式(Dijkstra)
BZOJ2118 墨墨的等式 题链:http://www.lydsy.com/JudgeOnline/problem.php?id=2118 Description 墨墨突然对等式很感兴趣,他正在研究 ...
- 【BZOJ 2118】墨墨的等式
http://www.lydsy.com/JudgeOnline/problem.php?id=2118 最短路就是为了找到最小的$x$满足$x=k×a_{min}+d,0≤d<a_{min}$ ...
- bzoj 2118 墨墨的等式 - 图论最短路建模
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...
- 数论+spfa算法 bzoj 2118 墨墨的等式
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1283 Solved: 496 Description 墨墨突然对等式很感兴 ...
- 【BZOJ 2118】 2118: 墨墨的等式 (最短路)
2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...
- bzoj 2118: 墨墨的等式 spfa
题目: 墨墨突然对等式很感兴趣,他正在研究\(a_1x_1+a_2y_2+ ... +a_nx_n=B\)存在非负整数解的条件,他要求你编写一个程序,给定\(N,\{a_n\}\)以及\(B\)的取值 ...
- [图论训练]BZOJ 2118: 墨墨的等式 【最短路】
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- BZOJ2118墨墨的等式[数论 最短路建模]
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1317 Solved: 504[Submit][Status][Discus ...
- 【BZOJ2118】墨墨的等式(最短路)
[BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...
随机推荐
- 关于Mac OS 使用GIT的引导
1. 下载Git installer 链接地址:https://ncu.dl.sourceforge.net/project/git-osx-installer/git-2.14.1-intel-un ...
- xapp1151_Param_CAM模块安装
xapp1151_Param_CAM模块安装 所需生成模块 TCAM CAM 下载链接 赛灵思技术支持网站:http://www.xilinx.com/support.html 并在网页中搜索xapp ...
- OO前三次作业总结
一.第一次作业 1.程序设计分析  图1 第一次作业类图  #.打开编辑器就打开了启动了一个进程,是在内存中的,所以,用编辑器编写的 ...
- 《javascript设计模式与开发实践》阅读笔记(10)—— 组合模式
组合模式:一些子对象组成一个父对象,子对象本身也可能是由一些孙对象组成. 有点类似树形结构的意思,这里举一个包含命令模式的例子 var list=function(){ //创建接口对象的函数 ret ...
- c 语言typedef 和 define的使用和区别
#define是C的指令,用于为各种数据类型定义别名,与typedef 类似,但是有一下几点不同 1,typedef仅限于为类型定义符号名称,而#define不仅可以为类型定义符号名称,也能为数值定义 ...
- Java NIO之选择器
1.简介 前面的文章说了缓冲区,说了通道,本文就来说说 NIO 中另一个重要的实现,即选择器 Selector.在更早的文章中,我简述了几种 IO 模型.如果大家看过之前的文章,并动手写过代码的话.再 ...
- Linq 对象的比较 Contains,Max
IList<Student> studentList = new List<Student>() { new Student() { StudentID = 1, Studen ...
- Linux知识积累(4) Linux下chkconfig命令详解
Linux下chkconfig命令详解 chkconfig命令主要用来更新(启动或停止)和查询系统服务的运行级信息.谨记chkconfig不是立即自动禁止或激活一个服务,它只是简单的改变了符号连接. ...
- SpringCloud的服务消费者 (二):(rest+feign/ribbon)声明式访问注册的微服务
采用Ribbon或Feign方式访问注册到EurekaServer中的微服务.1.Ribbon实现了客户端负载均衡,Feign底层调用Ribbon2.注册在EurekaServer中的微服务api,不 ...