Description

墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N、{an}、以及B的取值范围,求出有多少B可以使等式存在非负整数解。

Solution

选择任意一个正整数\(a_i\),作为 \(x*a_i\) 的底数,然后假如我们知道了最小满足 \(B \% a_i=k\) 的 \(B\),那么大于 \(B\) 的满足与 \(B\) 同余的也一定能够凑出来

所以我们只需要对于每一个余数,求出 \(dis[i]\) 表示用 \(a_1....a_n\) 能够凑出的满足 \(B%a_i=i\) 的最小的 \(B\) 为多少

然后对于每一个剩余类,分别算答案即可,可以保证不重不漏

最后答案就是 \(solve(BMax)-solve(BMin-1)\) 了

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=15;
int n,a[N],p=1;ll L,R,dis[500005];
queue<int>Q;bool vis[500005];
inline void spfa(){
for(int i=0;i<a[p];i++)dis[i]=1e13;
dis[0]=0;vis[0]=1;Q.push(0);
while(!Q.empty()){
int x=Q.front();Q.pop();
for(int i=1;i<=n;i++){
int u=(x+a[i])%a[p];
if(dis[x]+a[i]<dis[u]){
dis[u]=dis[x]+a[i];
if(!vis[u])vis[u]=1,Q.push(u);
}
}
vis[x]=0;
}
}
inline ll calc(ll x,int k){
return (x-k)/a[p]+1;
}
inline ll solve(ll mid){
ll ret=0;
for(int i=0;i<a[p];i++)
if(dis[i]<=mid)ret+=calc(mid,i)-calc(dis[i]-1,i);
return ret;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
scanf("%d%lld%lld",&n,&L,&R);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
sort(a+1,a+n+1);
if(a[n]==0){puts("0");return 0;}
while(!a[p])p++;spfa();
printf("%lld\n",solve(R)-solve(L-1));
return 0;
}

bzoj 2118: 墨墨的等式的更多相关文章

  1. 【BZOJ 2118】 墨墨的等式(Dijkstra)

    BZOJ2118 墨墨的等式 题链:http://www.lydsy.com/JudgeOnline/problem.php?id=2118 Description 墨墨突然对等式很感兴趣,他正在研究 ...

  2. 【BZOJ 2118】墨墨的等式

    http://www.lydsy.com/JudgeOnline/problem.php?id=2118 最短路就是为了找到最小的$x$满足$x=k×a_{min}+d,0≤d<a_{min}$ ...

  3. bzoj 2118 墨墨的等式 - 图论最短路建模

    墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...

  4. 数论+spfa算法 bzoj 2118 墨墨的等式

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1283  Solved: 496 Description 墨墨突然对等式很感兴 ...

  5. 【BZOJ 2118】 2118: 墨墨的等式 (最短路)

    2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...

  6. bzoj 2118: 墨墨的等式 spfa

    题目: 墨墨突然对等式很感兴趣,他正在研究\(a_1x_1+a_2y_2+ ... +a_nx_n=B\)存在非负整数解的条件,他要求你编写一个程序,给定\(N,\{a_n\}\)以及\(B\)的取值 ...

  7. [图论训练]BZOJ 2118: 墨墨的等式 【最短路】

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  8. BZOJ2118墨墨的等式[数论 最短路建模]

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1317  Solved: 504[Submit][Status][Discus ...

  9. 【BZOJ2118】墨墨的等式(最短路)

    [BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...

随机推荐

  1. C语言第六次博客作业--数据类型

    一.PTA实验作业 题目1:区位码输入法 1. 本题PTA提交列表 2. 设计思路 (1)定义整型变量code放区位码,areacode放区码,digitcode放位码,one放个位数,two放十位数 ...

  2. Beta阶段敏捷冲刺报告-DAY5

    Beta阶段敏捷冲刺报告-DAY5 Scrum Meeting 敏捷开发日期 2017.11.6 会议时间 12:00 会议地点 软工所 参会人员 全体成员 会议内容 乱序问题的解决,异常输入提示 讨 ...

  3. django restful 1-在线Python编辑器

    客户端(浏览器)----> 前端页面-----> 后端处理数据,并把数据以 json 形式发送到前端 online_app.py from django.conf import setti ...

  4. JAVA接口基础知识总结

    1:是用关键字interface定义的. 2:接口中包含的成员,最常见的有全局常量.抽象方法. 注意:接口中的成员都有固定的修饰符. 成员变量:public static final     成员方法 ...

  5. [USACO13JAN] Seating

    https://www.luogu.org/problem/show?pid=3071 题目描述 To earn some extra money, the cows have opened a re ...

  6. 搭建vue项目环境

    前言 在开发本项目之前,我对vue,react,angular等框架了解,仅限于知道它们是什么框架,他们的核心是什么,但是并没有实际使用过(angular 1.0版本用过,因为太难用,所以对这类框架都 ...

  7. PHP之this和self

    self在对象中自己调用自己使用 $this在实例化后使用$this方法 在访问PHP类中的成员变量或方法时,如果被引用的变量或者方法被声明成const(定义常量)或者static(声明静态),那么就 ...

  8. js解决IE8不支持html5,css3的问题(respond.js 的使用注意)

    IE8.0及以下不支持html5,css3的解析.目前为止IE8以下的版本使用率在10%左右,网站还是有必要兼容的. 1,在你的所有css最后判断引入两个js文件. html5.js  是用来让ie8 ...

  9. JavaScript 动态显示当前时间

    代码如下: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <tit ...

  10. Python内置函数(43)——type

    英文文档: class type(object) class type(name, bases, dict) With one argument, return the type of an obje ...