输入的标准化处理是对图片等输入信息进行标准化处理,使得所有输入的均值为0,方差为1

normalize = T.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])

而Batch Normalization的目的是使各隐藏层输入的均值和方差为任意值

Batch Norm经常使用在mini-batch上,这也是其名称的由来

Batch Normalization是对下面隐藏层进行激活函数操作前的输入Z[l]进行标准层处理

进行的操作有:

1)对输入进行归一化操作

  • m是单个mini-batch包含样本个数
  •  是为了防止分母为零,可取值 

此时的输入Z[i]变为了均值为0,方差为1的Znorm[i]

2)对归一化的结果进行缩放和平移

但是大部分情况下我们其实并不希望输入均值为0,方差为1,而是希望其根据训练的需要而设置为任意值

这个时候就需要进一步处理:

 和  是可以学习的参数,类似于W和b一样,可以通过梯度下降等算法求得

当两者的值为,那么,实现恒等映射

为什么需要进行这一步的处理:

从激活函数的角度来说,如果各隐藏层的输入均值在靠近0的区域即处于激活函数的线性区域,这样不利于训练好的非线性神经网络,得到的模型效果也不会太好

如resnet网络中的使用:

#这个实现的是两层的残差块,用于resnet18/
class BasicBlock(nn.Module):
expansion = def __init__(self, inplanes, planes, stride=, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride def forward(self, x):
identity = x out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out) out = self.conv2(out)
out = self.bn2(out) if self.downsample is not None: #当连接的维度不同时,使用1*1的卷积核将低维转成高维,然后才能进行相加
identity = self.downsample(x) out += identity
out = self.relu(out) return out

Batch Normalization的解释的更多相关文章

  1. 从Bayesian角度浅析Batch Normalization

    前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhih ...

  2. [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization

    课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ________ ...

  3. 使用TensorFlow中的Batch Normalization

    问题 训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题.但是却不能保证在训练过程中不出现该问题, ...

  4. 【深度学习】深入理解Batch Normalization批标准化

    这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出. Batch Normaliz ...

  5. Batch Normalization原理

    Batch Normalization导读 博客转载自:https://blog.csdn.net/malefactor/article/details/51476961 作者: 张俊林 为什么深度神 ...

  6. Feature Extractor[batch normalization]

    1 - 背景 摘要:因为随着前面层的参数的改变会导致后面层得到的输入数据的分布也会不断地改变,从而训练dnn变得麻烦.那么通过降低学习率和小心地参数初始化又会减慢训练过程,而且会使得具有饱和非线性模型 ...

  7. [转] 深入理解Batch Normalization批标准化

    转自:https://www.cnblogs.com/guoyaohua/p/8724433.html 郭耀华's Blog 欲穷千里目,更上一层楼项目主页:https://github.com/gu ...

  8. 论文笔记:Batch Normalization

    在神经网络的训练过程中,总会遇到一个很蛋疼的问题:梯度消失/爆炸.关于这个问题的根源,我在上一篇文章的读书笔记里也稍微提了一下.原因之一在于我们的输入数据(网络中任意层的输入)分布在激活函数收敛的区域 ...

  9. tensorflow中batch normalization的用法

    网上找了下tensorflow中使用batch normalization的博客,发现写的都不是很好,在此总结下: 1.原理 公式如下: y=γ(x-μ)/σ+β 其中x是输入,y是输出,μ是均值,σ ...

随机推荐

  1. 聊聊2018.2的Scriptable Build Pipeline以及构建Assetbundle

    0x00 前言 在这篇文章中,我们选择了过去几周Unity官方社区交流群以及UUG社区群中比较有代表性的几个问题,总结在这里和大家进行分享.主要涵盖了Scriptable Build Pipeline ...

  2. 跨域405(Method Not Allowed)问题

    zepot post没有问题,用plupload上传出现了这个错误,options过不去.显示Response for preflight has invalid http status code 4 ...

  3. springboot~zuul实现网关

    网关在微服务里的角色 在微服务架构体系里,网关是非常重要的一个环节,它主要实现了一些功能的统一处理,包括了: 统一授权 统一异常处理 路由导向 跨域处理 限流 实践一下 1 添加依赖 dependen ...

  4. 麒麟子Cocos Creator实用技巧一:如何正确地显示微信头像

    不管是游戏App,还是H5,又或者是微信小游戏.但凡接入了微信登录的应用,都可能需要显示微信头像. 在Cocos Creator中,我们常见的显示方法像下面这样 var headimg = 'http ...

  5. 102 - kube-scheduler源码分析 - cobra-寻找scheduler组件启动函数

    main函数在哪里? 看到这个go文件时大家是不是有一种找到入口的欣喜,同时有一种难以言表的郁闷,为什么那么短?获取一个command,然后执行一个Execute()就运行了?好像是这么回事,然后点开 ...

  6. 要搞刷机!从它的尸体上踏过去!钢板云路由!WPR003N复活!成功启动OPENWRT

    这是一个很鼓舞人心的标题,自从上一篇Aria2序之导言 00,成功的贴出两张开场图片,本来计划写它的开场引言 01,正好cp一个合格的导引(引导读起来有些奇怪),连续懒惰了好几天,突然想起了WPR00 ...

  7. JS 数组、对象的深拷贝

    博客地址:https://ainyi.com/72 JavaScript 程序中,对于简单的数字.字符串可以通过 = 赋值拷贝 但是对于数组.对象.对象数组的拷贝,就有浅拷贝和深拷贝之分 浅拷贝就是当 ...

  8. TensorRT学习总结

    TensorRT是什么 建议先看看这篇https://zhuanlan.zhihu.com/p/35657027 深度学习 训练 部署 平常自学深度学习的时候关注的更多是训练的部分,即得到一个模型.而 ...

  9. .NET CAD二次开发学习 直线画矩形并转换成组

    主要代码: using System;using System.Collections.Generic;using System.Linq;using System.Text;using System ...

  10. SpringCloud Alibaba-nacos注册中心

    什么是 Nacos?(https://nacos.io) Nacos 致力于帮助您发现.配置和管理微服务.Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现.服务配置.服务元数据及流量 ...