题目描述

给定\(n,m,p(1≤n,m,p≤10^5)\)

求 \(C_{n+m}^m mod p\)

保证\(P\)为\(prime\)

\(C\)表示组合数。

一个测试点内包含多组数据。

输入输出格式

输入格式:

第一行一个整数\(T(T≤10)\),表示数据组数

第二行开始共\(T\)行,每行三个数\(n m p\),意义如上

输出格式:

共\(T\)行,每行一个整数表示答案。

输入输出样例

输入样例#1:

2

1 2 5

2 1 5

输出样例#1:

3

3

题解

卢卡斯定理模板题

卢卡斯定理:

\(C_{m}^{n}≡C_{m/p}^{n/p}*C_{m\%p}^{n\%p}(mod p)\)

当\(n,m\)很大,而\(P\)很小的使用

递归计算即可

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
ll n,m,P;
ll jc[100100];
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll Pow(ll a,ll b)
{
ll s=1;
while(b)
{
if(b&1)s=1ll*s*a%P;
a=a*1ll*a%P;
b>>=1;
}
return s;
}
ll C(ll n,ll m)
{
if(m>n)return 0;
return jc[n]*Pow(jc[m]*jc[n-m]%P,P-2)%P;
}
ll Lucas(ll n,ll m)
{
if(m==0)return 1;
return (Lucas(n/P,m/P)*C(n%P,m%P))%P;
}
int main()
{
int T=read();
while(T--)
{
jc[0]=1;
n=read();m=read();P=read();
for(int i=1;i<=P;++i)jc[i]=jc[i-1]*1ll*i%P;
printf("%lld\n",Lucas(n+m,m)%P);
}
return 0;
}

【Luogu3807】【模板】卢卡斯定理(数论)的更多相关文章

  1. 【洛谷P3807】(模板)卢卡斯定理

    卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...

  2. 887. 求组合数 III(模板 卢卡斯定理)

    a,b都非常大,但是p较小 前边两种方法都会超时的  N^2 和NlongN  可以用卢卡斯定理  P*longN*longP     定义: 代码: import java.util.Scanner ...

  3. 洛谷.3807.[模板]卢卡斯定理(Lucas)

    题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...

  4. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  5. P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 求 \(C_{m + n}^{m} \% p\) ( \(1\le n,m,p\le 10^5\) ) 错误日志: 数组开小(哇啊啊啊洼地hi阿偶我姑父阿贺佛奥UFO爱 ...

  6. 【刷题】洛谷 P3807 【模板】卢卡斯定理

    题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...

  7. 洛谷 P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...

  8. 洛谷——P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...

  9. 数论篇7——组合数 & 卢卡斯定理(Lucas)

    组合数 组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数. 求解方式 求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\righ ...

随机推荐

  1. ACE在windows下的编译及配置(VS2010)

    ACE在windows下的编译及配置(VS2010) 分类:             -[小西南]-              2013-08-06 16:17     2354人阅读     评论( ...

  2. linux下boost的安装与编译

    1.从boost官网下载boost库包: 2.然后解压到linux下的任意一个文件夹, 3.进入boost_1_57文件夹下,不同的boost版本会解压城不同的库文件夹, 4.执行././bootst ...

  3. wangeditor Demo

    <html> <head> <!--在这里字符集的设定很重要,如果设定不当将会出现乱码--> <meta charset="UTF-8"& ...

  4. virtualbox命令行共享CentOS目录

    virtualbox命令行共享CentOS目录   1. 安装virtualbox增强工具 "右ctrl+c" 显示和隐藏virtualbox虚拟机的菜单栏. 在VirtualBo ...

  5. python学习:函数的递归调用

    计算阶层   普通方法: -使用循环   #!/usr/bin/python   def factorial(n):     sum = 1     for i in range(1,n+1):   ...

  6. iperf命令

    iperf命令网络测试 iperf命令是一个网络性能测试工具.iperf可以测试TCP和UDP带宽质量.iperf可以测量最大TCP带宽,具有多种参数和UDP特性.iperf可以报告带宽,延迟抖动和数 ...

  7. PHP die与exit的区别

    最近听见有人说die和exit区别,bula~bula.决心一探究竟. 翻了翻PHP 5.6的源码(源码的位置为zend目录下zend_language_scanner.l大约是1014~1020行) ...

  8. 查看Zookeeper服务器状态信息的一些命令

    1.Zookeeper服务器当前节点配置信息: echo conf|nc localhost 2181 2.cons:echo cons|nc localhost 2181 输出当前服务器所有客户端连 ...

  9. 【学习笔记】Spring中的BeanFactory和ApplicationContext 以及 Bean的生命周期(Y2-3-2)

    BeanFactory和ApplicationContext Spring的IoC容器就是一个实现了BeanFactory接口的可实例化类. Spring提供了两种不同的容器: 一种是最基本的Bean ...

  10. 使用Netbeans内置的Git工具

    在 NetBeans IDE 中使用 Git 支持 NetBeans IDE 为 Git 版本控制客户端提供支持.通过利用 IDE 的 Git 支持,您可以从 IDE 内的项目中直接执行版本控制任务. ...