Description

  有N个正整数,需要从中选出一些数,使这些数的和最大。
  若两个数a,b同时满足以下条件,则a,b不能同时被选
  1:存在正整数C,使a*a+b*b=c*c
  2:gcd(a,b)=1

Input

  第一行一个正整数n,表示数的个数。
  第二行n个正整数a1,a2,?an。

Output

  最大的和。

Sample Input

5
3 4 5 6 7

Sample Output

22

HINT

  n<=3000。

Source

  网络流

Solution

  所以这道题a的数据范围是什么......用long long可以过,不知道int行不行。

  嗯,把所有有关系的数字连一条边,这道题就变成了选出一些点使这些点两两没有边相连,求最大点权。这样就变成了最大点权独立集问题。

  然后好像这个图一定是二分图,就可以用网络流做了。如果不是二分图就是NP问题了233。

  有一个奇怪的定理:最大点权独立集 = 总权值 - 最小点权覆盖集 = 总权值 - 最小割 = 总权值 - 最大流。

  好像不只一个定理,怪我咯。

  把每个数字拆成两个点,从源点连向一个点,另一个点连向汇点,边权均为数字大小。然后把有关系的点之间连一条边,边权无限大。

  跑一遍最大流,答案就是总权值 - 最大流 / 2。

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll INF = ;
struct edge
{
int v, nxt;
ll w;
}e[];
queue<int> Q;
ll d[];
int fst[], etot = , sss, ttt, level[]; void addedge(int u, int v, ll w)
{
e[++etot] = (edge){v, fst[u], w}, fst[u] = etot;
} bool istri(ll a, ll b)
{
ll c = (ll)sqrt(a * a + b * b + 0.1);
return c * c == a * a + b * b;
} ll gcd(ll a, ll b)
{
return b ? gcd(b, a % b) : a;
} int BFS()
{
memset(level, , sizeof(level));
Q.push(sss), level[sss] = ;
while(!Q.empty())
{
int u = Q.front();
Q.pop();
for(int i = fst[u]; i; i = e[i].nxt)
if(!level[e[i].v] && e[i].w)
Q.push(e[i].v), level[e[i].v] = level[u] + ;
}
return level[ttt];
} ll Dinic(int u, ll lim)
{
ll tmp = lim;
if(u == ttt) return lim;
for(int i = fst[u]; i; i = e[i].nxt)
if(level[e[i].v] == level[u] + && e[i].w)
{
ll flow = Dinic(e[i].v, min(tmp, e[i].w));
e[i].w -= flow, e[i ^ ].w += flow;
if(!(tmp -= flow)) break;
}
if(tmp == lim) level[u] = ;
return lim - tmp;
} int main()
{
int n;
ll ans = ;
cin >> n;
sss = (n << ) + , ttt = (n << ) + ;
for(int i = ; i <= n; i++)
cin >> d[i];
for(int i = ; i <= n; i++)
{
addedge(sss, i, d[i]), addedge(i, sss, );
addedge(i + n, ttt, d[i]), addedge(ttt, i + n, );
}
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
if(istri(d[i], d[j]) && gcd(d[i], d[j]) == )
addedge(i, j + n, INF), addedge(j + n, i, );
while(BFS())
ans += Dinic(sss, INF);
ans = -(ans >> );
for(int i = ; i <= n; i++)
ans += d[i];
cout << ans << endl;
return ;
}

[BZOJ3275] Number (网络流)的更多相关文章

  1. [BZOJ3275]Number解题报告|网络流

    Description 有N个正整数,需要从中选出一些数,使这些数的和最大.若两个数a,b同时满足以下条件,则a,b不能同时被选1:存在正整数C,使a*a+b*b=c*c2:gcd(a,b)=1 这道 ...

  2. bzoj3275: Number

    最小割...然后推一下可知不能的情况必定为一奇一偶,于是s->奇->偶->t.跑最小割即可. #include<cstdio> #include<cstring&g ...

  3. bzoj3275: Number(最小割)

    3275: Number 题目:传送门 题解: 双倍经验@bzoj3158 代码: #include<cstdio> #include<cstring> #include< ...

  4. 【最小割】【Dinic】bzoj3275 Number

    每个点拆点,分别向源/汇连a[i]的边,满足条件的相互连INF的边,答案为sum-maxflow*2. 因为若有几个点不能同时被选,我们要贪心地选择其中和尽量大的部分,这可以由最小割来保证. #inc ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. 【BZOJ-3275&3158】Number&千钧一发 最小割

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 748  Solved: 316[Submit][Status][Discus ...

  7. 【BZOJ3275】Number 最小割

    [BZOJ3275]Number Description 有N个正整数,需要从中选出一些数,使这些数的和最大.若两个数a,b同时满足以下条件,则a,b不能同时被选1:存在正整数C,使a*a+b*b=c ...

  8. 【POJ2699】The Maximum Number of Strong Kings(网络流)

    Description A tournament can be represented by a complete graph in which each vertex denotes a playe ...

  9. POJ 2699 The Maximum Number of Strong Kings ——网络流

    一定存在一种最优方案,使得分数前几个人是SK 所以我们可以二分答案或者枚举,然后就是经典的网络流建模. 另:输入很Excited #include <cstdio> #include &l ...

随机推荐

  1. Ios App上传步骤

    前言:作为一名IOS开发者,把开发出来的App上传到App Store是必须的.下面就来详细介绍下具体流程. 1.打开苹果开发者中心:https://developer.apple.com 打开后点击 ...

  2. explorer.exe 该文件没有与之关联的程序来执行该操作

    删了点右键的东西搞出来的问题 其实就是关联出错了,解决:(新建一个temp.reg,内容如下,然后双击导入注册表即可) Windows Registry Editor Version 5.00 [[H ...

  3. 【Unity3D技术文档翻译】第1.6篇 使用 AssetBundle Manager

    上一章:[Unity3D技术文档翻译]第1.5篇 使用 AssetBundles 本章原文所在章节:[Unity Manual]→[Working in Unity]→[Advanced Develo ...

  4. 借腾讯开源 VasDolly,谈谈 Android 签名和多渠道打包的原理!

    一.前言 Hi,大家好,我是承香墨影! 当我们需要发布一款 App 到应用市场的时候,一般需要我们针对不同的市场生产不同的渠道包,它们使用的是同一套代码,只是会包含一些各自的渠道信息,用于我们做数据分 ...

  5. Java经典编程题50道之四十三

    一个偶数总能表示为两个素数之和. public class Example43 {    public static void main(String[] args) {        f();   ...

  6. 重绘(redraw或repaint),重排(reflow)

    浏览器运行机制图: 浏览器的运行机制:layout:布局: 1.构建DOM树(parse):渲染引擎解析HTML文档,首先将标签转换成DOM树中的DOM node(包括js生成的标签)生成内容树(Co ...

  7. php 快排

    <?php $arr =array(3,1,5,67,8,7,9,9); function qsort(&$arr,$head,$tail){ if($head>=$tail){ ...

  8. JavaScript实现排序二叉树的相关算法

    1.创建排序二叉树的构造函数 /** * 创建排序二叉树的构造函数 * @param valArr 排序二叉树中节点的值 * @constructor */ function BinaryTree(v ...

  9. Windows平台监听服务无法启动报报TNS-12560 TNS-00530案例

      在Windows Server 2012平台使用命令启动监听服务时遇到了TNS-12560 & TNS-00530错误. C:\Users>lsnrctl start GEW_LIS ...

  10. Linux CentOS7下安装python3

    在CentOS7下,默认安装的就是python2.7,我现在来教大家如何安装python3: 1.首先安装python3.6可能使用的依赖 # yum -y install openssl-devel ...