Logistic Regression 算法向量化实现及心得
Author: 相忠良(Zhong-Liang Xiang)
Email: ugoood@163.com
Date: Sep. 23st, 2017
根据 Andrew Ng 老师的深度学习课程课后作业及指导,参照吴老师代码完成了这个LR的coding.
(重要)吴老师建议,数据应组织成下列形式,有利于扫除编程bug:
- X.shape = (n_x, m), n_x是样本维度,m是样本个数
- Y.shape = (1, m)
- w, b应该分开,其中:
- b is a scaler
- w.shape = (n_x, 1)
- A = sigmoid(np.dot(w.T, X)+b), A.shape = (1, m)
- dw.shape = (n_x, 1)
- db is a scaler
- dZ = A - Y, dZ.shape = A.shape = Y.shape = (1, m)
- 重要建议:
- 勇于使用 reshape, 使之成为我们需要的维度, 要始终使用明确维度的行、列向量和 matrix;
- 绝不使用 a = np.random.randn(5), a.shape = (5,)这种"rank 1 array".因为这东西使用时不符合直觉;
- 应该用 a = np.random.randn(5,1) 或者 (1,5) 这种非常明确的列或行向量(very important)!
- 若出现2所示内容,解决办法是:a = a.reshape(5,1) 或者 (1,5)重新明确shape!;
- 要经常并随意使用 assert(a.shape == (5,1)) 这种断言;
- 要仔细检查我们的 matrix, vector的维度.
自己的总结:
1. 先完成推导,明确输入输出以及哪些变量是已知的,哪些是待求的.
2. 写出程序伪代码.
3. 针对伪代码,逐条完成程序的 vectorize 过程. 这时要小心地,自输入开始地,维护好各种 vector, matrix 的维度, 必要时随需求,毫不犹豫地使用 reshape.
4. 上述第3条保证了程序中尽量地少使用 for loop.
5. 遵从 Andrew Ng 老师的上述建议,尤其是对 X, Y, A, w, b, dw, db, dZ 这些 vector, matrix 们的 shape 的把握.
符合上述规则和自己的总结,编出个机器学习算法就很简单了.
我整合吴老师的课后作业,加了少许修改,做出 Logisitc Regression 算法的代码, 如下:
# !/usr/bin/python
# -*- coding:utf-8 -*-
"""
Re-implement Logistic Regression algorithm as a practice
使用该 LR re-implement 的前提:
Due to the binary classifier of LR
The label of a sample must be as probability
train data 的标签必须转成0,1的形式
"""
# Author: 相忠良(Zhong-Liang Xiang) <ugoood@163.com>
# Finished on September 23rd, 2017
import h5py
import numpy as np
def load_dataset():
train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
classes = np.array(test_dataset["list_classes"][:]) # the list of classes
train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
def load_data():
train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes = load_dataset()
train_X = (train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T) / 255. # flatten and divide 255
test_X = (test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T) / 255. # flatten and divide 255
return train_X, train_set_y_orig, test_X, test_set_y_orig, classes
def sigmoid(z):
"""
Compute the sigmoid of z
Arguments:
z -- A scalar or numpy array of any size.
Return:
s -- sigmoid(z)
"""
s = 1.0 / (1 + np.exp(-z))
return s
def init_with_zeros(dim):
"""
This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.
Argument:
dim -- size of the w vector we want (or number of parameters in this case)
Returns:
w -- initialized vector of shape (dim, 1)
b -- initialized scalar (corresponds to the bias)
"""
w = np.zeros((dim, 1))
b = 0
assert (w.shape == (dim, 1))
assert (isinstance(b, float) or isinstance(b, int))
return w, b
def propagate(w, b, X, Y):
"""
Implement the cost function and its gradient for the propagation
Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of size (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)
Return:
cost -- negative log-likelihood cost for logistic regression
dw -- gradient of the loss with respect to w, thus same shape as w
db -- gradient of the loss with respect to b, thus same shape as b
"""
# FORWARD PROPAGATION(FROM X TO COST)
m = X.shape[1] # 样本个数
A = sigmoid(np.dot(w.T, X) + b) # activation (1 * m)
cost = (np.dot(np.log(A), Y.T) + np.dot(np.log(1 - A), (1 - Y).T)) / -m # a scaler
# BACKWARD PROPAGATION (TO FIND GRAD)
dZ = A - Y # (1 * m)
dw = np.dot(X, dZ.T) / m # (n_x, 1) n_x 是 样本的维度
db = np.sum(dZ) / m # a scaler
# ASSERT
assert (dw.shape == w.shape)
assert (db.dtype == float)
cost = np.squeeze(cost) # 变成个数字
assert (cost.shape == ())
grads = {"dw": dw,
"db": db}
return grads, cost
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost):
"""
This function optimizes w and b by running a gradient descent algorithm
Arguments:
w -- weights, a numpy array of size (num_px * num_px * 3, 1)
b -- bias, a scalar
X -- data of shape (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
num_iterations -- number of iterations of the optimization loop
learning_rate -- learning rate of the gradient descent update rule
print_cost -- True to print the loss every 100 steps
Returns:
params -- dictionary containing the weights w and bias b
grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
"""
costs = [] # 将迭代过程中算出的cost收集起来
for i in range(num_iterations):
# Cost and gradient calculation
grads, cost = propagate(w, b, X, Y)
# Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"]
# update dw, db
w = w - learning_rate * dw
b = b - learning_rate * db
# Record the costs
if i % 100 == 0:
costs.append(cost)
# Print the cost every 100 iterations
if print_cost and i % 100 == 0:
print("Cost after iteration %i: %f" % (i, cost))
params = {"w": w,
"b": b}
grads = {"dw": dw,
"db": db}
return params, grads, costs
class MyLogisticRegression:
costs = []
params = {} # w, b
grads = {} # dw, db
num_iterations = 0
learning_rate = 0.
print_cost = False
def __init__(self, num_iterations=1000, learning_rate=0.01, print_cost=False):
# 初始化超參數 num_iterations, learning_rate
self.num_iterations = num_iterations
self.learning_rate = learning_rate
self.print_cost = print_cost
return
def fit(self, X, Y):
n_x = X.shape[0] # dim of X
w, b = init_with_zeros(n_x) # initialize w,b with zeros, w.shape=(n_x, 1), b=0 a scaler.
# 前向传播获取cost,反向传播获取grads,并更新params.这种事情做了num_iterations次,学习率为learning_rate
self.params, self.grads, self.costs = optimize(w, b, X, Y, self.num_iterations, self.learning_rate,
self.print_cost)
# fit函数的结果是获取params.顺便得到了grads, costs, 便于我们查看并对costs画图,以检查模型是否学到了东西.
def predict(self, X):
m = X.shape[1] # the number of samples
Y_predict = np.zeros((1, m)) # initialize Y_predict
w = self.params["w"] # 获取已经训练好的 w
b = self.params["b"] # 获取已经训练好的 b
A = sigmoid(np.dot(w.T, X) + b) # 根据 训练好的w,b,计算 p(Y=1|X)
# 将预测概率p(Y=1|X)转换为标签值, 大于0.5的标签值为1,否则为0
for i in range(A.shape[1]):
Y_predict[0, i] = 1 if A[0, i] > 0.5 else 0
assert (Y_predict.shape == (1, m))
return Y_predict
def score(self, X, y):
pass
## 测试用例
train_X, train_y, test_X, test_y, classes = load_data()
cls = MyLogisticRegression(num_iterations=2000, learning_rate=0.005, print_cost=True)
cls.fit(train_X, train_y)
Y_predict_test = cls.predict(test_X)
Y_predict_train = cls.predict(train_X)
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_predict_train - train_y)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_predict_test - test_y)) * 100))
"""
运行结果
/usr/bin/python2.7 /home/xiang/桌面/ML_Course_20170314/xiang_code/Xiang_ml_in_practice/MyLogisticRegression.py
Cost after iteration 0: 0.693147
Cost after iteration 100: 0.584508
Cost after iteration 200: 0.466949
Cost after iteration 300: 0.376007
Cost after iteration 400: 0.331463
Cost after iteration 500: 0.303273
Cost after iteration 600: 0.279880
Cost after iteration 700: 0.260042
Cost after iteration 800: 0.242941
Cost after iteration 900: 0.228004
Cost after iteration 1000: 0.214820
Cost after iteration 1100: 0.203078
Cost after iteration 1200: 0.192544
Cost after iteration 1300: 0.183033
Cost after iteration 1400: 0.174399
Cost after iteration 1500: 0.166521
Cost after iteration 1600: 0.159305
Cost after iteration 1700: 0.152667
Cost after iteration 1800: 0.146542
Cost after iteration 1900: 0.140872
train accuracy: 99.043062201 %
test accuracy: 70.0 %
"""
Logistic Regression 算法向量化实现及心得的更多相关文章
- 学习Logistic Regression的笔记与理解(转)
学习Logistic Regression的笔记与理解 1.首先从结果往前来看下how logistic regression make predictions. 设我们某个测试数据为X(x0,x1, ...
- Neural Networks and Deep Learning(week2)Logistic Regression with a Neural Network mindset(实现一个图像识别算法)
Logistic Regression with a Neural Network mindset You will learn to: Build the general architecture ...
- 逻辑回归(Logistic Regression)算法小结
一.逻辑回归简述: 回顾线性回归算法,对于给定的一些n维特征(x1,x2,x3,......xn),我们想通过对这些特征进行加权求和汇总的方法来描绘出事物的最终运算结果.从而衍生出我们线性回归的计算公 ...
- 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)
http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) z ...
- 【算法】Logistic regression (逻辑回归) 概述
Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性.比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等 ...
- 分类算法之逻辑回归(Logistic Regression
分类算法之逻辑回归(Logistic Regression) 1.二分类问题 现在有一家医院,想要对病人的病情进行分析,其中有一项就是关于良性\恶性肿瘤的判断,现在有一批数据集是关于肿瘤大小的,任务就 ...
- 通俗地说逻辑回归【Logistic regression】算法(二)sklearn逻辑回归实战
前情提要: 通俗地说逻辑回归[Logistic regression]算法(一) 逻辑回归模型原理介绍 上一篇主要介绍了逻辑回归中,相对理论化的知识,这次主要是对上篇做一点点补充,以及介绍sklear ...
- 机器学习---三种线性算法的比较(线性回归,感知机,逻辑回归)(Machine Learning Linear Regression Perceptron Logistic Regression Comparison)
最小二乘线性回归,感知机,逻辑回归的比较: 最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logis ...
- Python机器学习算法 — 逻辑回归(Logistic Regression)
逻辑回归--简介 逻辑回归(Logistic Regression)就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型 ...
随机推荐
- semver(Semantic Versioning)
Based on semver, you can use Hyphen Ranges X.Y.Z - A.B.C 1.2.3-2.3.4 Indicates >=1.2.3 <=2.3.4 ...
- 使用开源数据库客户端DBeaver连接DB2数据库
下载安装 首先进入 官网 选择对应的版本进行安装. 下载下来后,一直惦记next即可完成安装(期间包括选择文件安装路径等操作,可按需修改). 连接db2 打开DBeaver,新建连接-->DBe ...
- iOS10 越狱, openSSH
iOS 10 已经可以越狱, 不过比较蛋疼的是非完美越狱,每次重启都要从新越狱. 感兴趣的同学可以尝试一下,本人使用同步推上的教程,亲测可用. 越狱完后想安装OpenSSH, 在Cydia上搜索安装, ...
- java--- 使用interrupte中断线程的真正用途
Java线程之中,一个线程的生命周期分为:初始.就绪.运行.阻塞以及结束.当然,其中也可以有四种状态,初始.就绪.运行以及结束. 一般而言,可能有三种原因引起阻塞:等待阻塞.同步阻塞以及其他阻塞(睡眠 ...
- selenium 设置代理的话,可以使用这种方式,代码是我刚才测试过的,亲测可用
from selenium import webdriver chrome_options = webdriver.ChromeOptions() chrome_options.add_argumen ...
- [LeetCode] Maximum Length of Repeated Subarray 最长的重复子数组
Given two integer arrays A and B, return the maximum length of an subarray that appears in both arra ...
- github的简单使用
查了好多入门教程(图文并茂可以了解一些基本步骤),感觉逻辑欠缺,(很多东西跟着教程了解会用了,不了解逻辑,只是会了这一个,其他的还是很蒙),来一起理一理把 1.第一步下载并注册(这个自己解决) 2.用 ...
- pymysql实现从a表过滤出有效信息添加至b表
# Author: yeshengbao # -- coding: utf-8 -- # @Time : 2018/4/16 19:23 import pymysql # 创建连接 conn = py ...
- 基于webpack的React项目搭建(二)
前言 前面我们已经搭建了基础环境,现在将开发环境更完善一些. devtool 在开发的过程,我们会经常调试,so,为了方便我们在chrome中调试源代码,需要更改webpack.config.js,然 ...
- ABP领域层知识回顾之---实体
标题:重温ABP领域层 1. 前言 最近一段时间一直在看<ABP的开发指南>(基于DDD的经典分层架构思想).因为之前一段时间刚看完<领域驱动设计:软件核心复杂性应对之道>, ...