在做很多与时间序列有关的预测时,比如股票预测,餐厅菜品销量预测时常常会用到时间序列算法,之前在学习这方面的知识时发现这方面的知识讲解不多,所以自己对时间序列算法中的常用概念和模型进行梳理总结(但是为了内容的正确性有些内容我通过截图来记录吧),希望能有所帮助^.^

一、时间序列的预处理

在拿到基于时间的观测值序列后,需要首先进行两步预处理,一个是纯随机性检验,另一个是平稳性检验,然后根据这两步的检验结果再采取相应的时间序列模型进行分析。

简单来讲平稳序列就是指均值和方差不发生明显变化

注:时序图检验和自相关检验实际是通过绘制相应的图进行观察,在下面的内容会结合具体的图进行分析

二、平稳时间序列模型

在学习具体模型之前,我们需要了解两种相关系数

1.自相关系数

2.偏相关系数

不要小看这两个系数,它们对于模型的选择起着至关重要的作用,如果现在对这两个系数还不是很理解,请继续往下看吧~。~

(一)、自回归模型AR(p)

(二)、移动平均模型MA(q)

(三)、自回归移动平均模型ARMA(p,q)

三、非平稳时间序列模型

在实际环境中大多数序列都是非平稳的,这里主要学习ARIMA模型

从它的名字我们就可以看到在使用它时需要首先对数据进行差分运算将非平稳时间序列变为平稳时间序列,然后再运用ARIMA模型。

四、确定参数p,q的取值

现在还剩最后一个问题要解决了,我们已经知道时间序列都有哪些模型了,那么我们怎么确定使用哪个模型呢,确定了使用哪个模型后,就要特别注意我用绿色圈圈画出的p,q,怎么确定相应模型的参数取值呢?

让我们看一下下面的这张图吧,它就是上面两个问题的key,现在直接看肯定是看不明白的,让我们先看列ACF,PACF,它们其实就是自相关系数和偏自相关系数(在上面已经提到了)的图,先知道一下什么是截尾的概念,截尾就是指ACF图,PACF图何时落入置信区间(这个是我自己理解的,大家可以自行查阅)

确定参数p,q的取值主要有两种方法:

1.肉眼观察ACF图和PACF图法

现在我们结合上面的原则观察下面的自相关图和偏自相关图,发现自相关图1阶截尾,偏自相关图具有拖尾性,所以可以确定为MA模型,并且取q为1,但是有时观察图并不是很准确,我们就可以使用下面的方法啦

2.计算AIC,BIC,原则是使AIC和BIC越小越好(大家可以自己查阅具体详细的知识^.^)

终于写完这篇梳理笔记了,开心。

时间序列算法(平稳时间序列模型,AR(p),MA(q),ARMA(p,q)模型和非平稳时间序列模型,ARIMA(p,d,q)模型)的模型以及需要的概念基础学习笔记梳理的更多相关文章

  1. 第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性

      1白噪声过程: 零均值,同方差,无自相关(协方差为0) 以后我们遇到的efshow如果不特殊说明,就是白噪声过程. 对于正态分布而言,不相关即可推出独立,所以如果该白噪声如果服从正态分布,则其还将 ...

  2. 概率图模型学习笔记:HMM、MEMM、CRF

    作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...

  3. OpenCV 学习笔记 04 深度估计与分割——GrabCut算法与分水岭算法

    1 使用普通摄像头进行深度估计 1.1 深度估计原理 这里会用到几何学中的极几何(Epipolar Geometry),它属于立体视觉(stereo vision)几何学,立体视觉是计算机视觉的一个分 ...

  4. ARIMA模型——本质上是error和t-?时刻数据差分的线性模型!!!如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理!ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数

    https://www.cnblogs.com/bradleon/p/6827109.html 文章里写得非常好,需详细看.尤其是arima的举例! 可以看到:ARIMA本质上是error和t-?时刻 ...

  5. 时序分析:ARIMA模型(非平稳时间序列)

    转载于一篇硕士论文.... ARIMA模型意为求和自回归滑动平均模型(IntergratedAut少regressive MovingAverageModel),简记为ARIMA(p,d,q),p,q ...

  6. HMM模型学习笔记(前向算法实例)

    HMM算法想必大家已经听说了好多次了,完全看公式一头雾水.但是HMM的基本理论其实很简单.因为HMM是马尔科夫链中的一种,只是它的状态不能直接被观察到,但是可以通过观察向量间接的反映出来,即每一个观察 ...

  7. 深度学习在美团点评推荐平台排序中的应用&& wide&&deep推荐系统模型--学习笔记

    写在前面:据说下周就要xxxxxxxx, 吓得本宝宝赶紧找些广告的东西看看 gbdt+lr的模型之前是知道怎么搞的,dnn+lr的模型也是知道的,但是都没有试验过 深度学习在美团点评推荐平台排序中的运 ...

  8. cips2016+学习笔记︱简述常见的语言表示模型(词嵌入、句表示、篇章表示)

    在cips2016出来之前,笔者也总结过种类繁多,类似词向量的内容,自然语言处理︱简述四大类文本分析中的"词向量"(文本词特征提取)事实证明,笔者当时所写的基本跟CIPS2016一 ...

  9. 使用RStudio调试(debug)基础学习(二)和fGarch包中的garchFit函数估计GARCH模型的原理和源码

    一.garchFit函数的参数--------------------------------------------- algorithm a string parameter that deter ...

随机推荐

  1. Linux下网站根目录权限

    网站根目录权限遵循: 文件644 文件夹755 权限用户和用户组www-data 如出现文件权限问题时,请执行下面3条命令: chown -R www-data.www-data /usr/local ...

  2. Caffe初学者第一部:Ubuntu14.04上安装caffe(CPU)+Python的详细过程 (亲测成功, 20180524更新)

    前言: 最近在学习深度学习,最先要解决的当然是开源框架的环境安装了.之前一直在学习谷歌的Tensorflow开源框架,最近实验中需要跟别人的算法比较,下载的别人的代码很多都是Caffe的,所以想着搭建 ...

  3. 判断decimal 是否为整数

    用了半个小时搞懂了这个问题,基础愁死我了! private static boolean isIntegerValue(BigDecimal decimalVal) { return decimalV ...

  4. ERP不规范,同事两行泪

    最近的很多次对外交流,都聊到了ERP建设的话题,并且无一例外的不那么让人省心,回想我这么多年走过的ERP坑坑路,在这里也写下经验和总结,希望能给正在或者即将走上ERP建设路的企业一些思考和帮助. 导读 ...

  5. kubernetes进阶之四:Label和Label Selector

    一:什么是Label Label是Kubernetes系列中另外一个核心概念.是一组绑定到K8s资源对象上的key/value对.同一个对象的labels属性的key必须唯一.label可以附加到各种 ...

  6. API做翻页的两种思路

    在开发API的时候,有时候数据太多了,就需要分页读取. 基于偏移量的分页(Offset-based) 这种方式就是会提供一个每页笔数(page size)来定义返回条目的最大数,提供一个页数(page ...

  7. 基于Unity的AR开发初探:发布AR应用到Android平台

    本文接上一篇,介绍一下如何通过Unity发布第一个AR应用至Android平台,在Android手机上使用我们的第一个AR应用. 一.一些准备工作 1.1 准备Java JDK 这里选择的是JDK 1 ...

  8. Asp.Net Core 轻松学-多线程之Task(补充)

    前言     在上一章 Asp.Net Core 轻松学-多线程之Task快速上手 文章中,介绍了使用Task的各种常用场景,但是感觉有部分内容还没有完善,在这里补充一下. 1. 任务的等待 在使用 ...

  9. CSharpGL(53)漫反射辐照度

    CSharpGL(53)漫反射辐照度 本系列将通过翻译(https://learnopengl.com)这个网站上关于PBR的内容来学习PBR(Physically Based Rendering). ...

  10. Python-将json文件写入ES数据库

    1.安装Elasticsearch数据库 PS:在此之前需首先安装Java SE环境 下载elasticsearch-6.5.2版本,进入/elasticsearch-6.5.2/bin目录,双击执行 ...