一、Apache kylin的核心概念

  1. 表(Table ):表定义在hive中,是数据立方体(Data cube)的数据源,在build cube 之前,必须同步在 kylin中。
  2. 模型(model):模型描述了一个星型模式的数据结构,它定义了一个事实表(Fact Table: Wiki:Fact_table)和多个查找表(Lookup Table:Wiki:Lookup_table)的连接和过滤关系。
  3. 立方体(Cube):它定义了使用的模型、模型中的表的维度(dimension:Wiki:dimension)、度量(measure:Wiki:measure ,一般指聚合函数,如:sum、count、average等)、如何对分区( segments partition)、合并段(segments auto-merge)等的规则。
  4. 立方体段(Cube Segment):它是立方体构建(build)后的数据载体,一个 segment 映射hbase中的一张表,立方体实例构建(build)后,会产生一个新的segment,一旦某个已经构建的立方体的原始数据发生变化,只需刷新(fresh)变化的时间段所关联的segment即可。
  5. 作业(Job):对立方体实例发出构建(build)请求后,会产生一个作业。该作业记录了立方体实例build时的每一步任务信息。作业的状态信息反映构建立方体实例的结果信息。如作业执行的状态信息为RUNNING 时,表明立方体实例正在被构建;若作业状态信息为FINISHED ,表明立方体实例构建成功;若作业状态信息为ERROR ,表明立方体实例构建失败!作业的所有状态如下:
  • NEW - This denotes one job has been just created.
  • PENDING - This denotes one job is paused by job scheduler and waiting for resources.
  • RUNNING - This denotes one job is running in progress.
  • FINISHED - This denotes one job is successfully finished.
  • ERROR - This denotes one job is aborted with errors.
  • DISCARDED - This denotes one job is cancelled by end users.

二、Apache kylin的工作机制

Apache kylin 能提供低延迟(sub-second latency)的秘诀就是预计算,即针对一个星型拓扑结构的数据立方体,预计算多个维度组合的度量,然后将结果保存在hbase中,对外暴露JDBC、ODBC、Rest API的查询接口,即可实现实时查询。

数据立方体一般由Hive中的一个事实表,多个查找表组成。预计算的过程在kylin中就是 Cube 的build过程,如下图:

当前Apache kylin构建(build)数据立方体,采用逐层算法(By Layer Cubing)。未来的发布中将采用快速立方体算法(Fast Cubing)。下面简单介绍一下逐层算法

一个完整的数据立方体,由N-dimension立方体,N-1
dimension立方体,N-2维立方体,0
dimension立方体这样的层关系组成,除了N-dimension立方体,基于原数据计算,其他层的立方体可基于其父层的立方体计算。所以该算法的核心是N次顺序的MapReduce计算。

在MapReduce模型中,key由维度的组合的构成,value由度量的组合构成,当一个Map读到一个key-value对时,它会计算所有的子立方体(child cuboid),在每个子立方体中,Map从key中移除一个维度,将新key和value输出到reducer中。直到当所有层计算完毕,才完成数据立方体的计算。过程如下图:

在数据立方体计算完毕后,有一个任务(Convert
Cuboid Data to HFile),其职责是将reduce输出的运算结果(Cuboid
Data)转化成Hbase中的存储载体(HFile),最终将HFile
加载到Hbase表中便于查询。其中表的rowkey由维度组合而成,维度组合对应的度量值构成了column
family,为了查询减少存储空间,会对RowKey和column family的值进行编码,默认编码是Snappy。整个数据立方体的构建流程如下:

三、Apache kylin的架构及核心组件

Apache kylin 架构如下:

核心组件:

    • 数据立方体构建引擎(Cube Build Engine):当前底层数据计算引擎支持MapReduce1、MapReduce2、Spark等。
    • Rest Server:当前kylin采用的rest API、JDBC、ODBC接口提供web服务。
    • 查询引擎(Query Engine):Rest Server接收查询请求后,解析sql语句,生成执行计划,然后转发查询请求到Hbase中,最后将结构返回给 Rest Server。

Apache kylin概览的更多相关文章

  1. APACHE KYLIN™ 概览

    APACHE KYLIN™ 概览 Apache Kylin™是一个开源的分布式分析引擎,提供Hadoop之上的SQL查询接口及多维分析(OLAP)能力以支持超大规模数据,最初由eBay Inc. 开发 ...

  2. APACHE KYLIN™ 概览(分布式分析引擎)

    Apache Kylin™是一个开源的分布式分析引擎,提供Hadoop/Spark之上的SQL查询接口及多维分析(OLAP)能力以支持超大规模数据,最初由eBay Inc. 开发并贡献至开源社区.它能 ...

  3. 《基于Apache Kylin构建大数据分析平台》

    Kyligence联合创始人兼CEO,Apache Kylin项目管理委员会主席(PMC Chair)韩卿 武汉市云升科技发展有限公司董事长,<智慧城市-大数据.物联网和云计算之应用>作者 ...

  4. Apache Kylin 部署之不完全指南

    1. 引言 Apache Kylin(麒麟)是由eBay开源的分布式分析引擎,提供Hadoop之上的SQL查询接口及多维分析(OLAP)能力以支持超大规模数据.底层存储用的是HBase,数据输入与cu ...

  5. 【转】使用Apache Kylin搭建企业级开源大数据分析平台

    http://www.thebigdata.cn/JieJueFangAn/30143.html 本篇文章整理自史少锋4月23日在『1024大数据技术峰会』上的分享实录:使用Apache Kylin搭 ...

  6. 大数据分析神兽麒麟(Apache Kylin)

    1.Apache Kylin是什么? 在现在的大数据时代,越来越多的企业开始使用Hadoop管理数据,但是现有的业务分析工具(如Tableau,Microstrategy等)往往存在很大的局限,如难以 ...

  7. 【大数据安全】Apache Kylin 安全配置(Kerberos)

    1. 概述 本文首先会简单介绍Kylin的安装配置,然后介绍启用Kerberos的CDH集群中如何部署及使用Kylin. Apache Kylin™是一个开源的分布式分析引擎,提供Hadoop/Spa ...

  8. apache kylin的单节点及多节点安装

    Kylin的使用安装文档Kylin简介Kylin是什么Apache Kylin是一个开源的分布式分析引擎,最初由eBay开发贡献至开源社区.它提供Hadoop之上的SQL查询接口及多维分析(OLAP) ...

  9. Apache kylin 入门

    本篇文章就概念.工作机制.数据备份.优势与不足4个方面详细介绍了Apache Kylin. Apache Kylin 简介 1. Apache kylin 是一个开源的海量数据分布式预处理引擎.它通过 ...

随机推荐

  1. 兼容性:Adapter(适配器模式)【PHP】

    Adapter(适配器模式) ---- 加个“适配器”以便于复用 将一个类的接口转换成客户希望的另一个接口.Adapter模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作. 应用场景 如果 ...

  2. canvas实现画板

    canvas实现画板 主要用到知识点: 鼠标事件onmousedown() onmousemove() onmouseup() onmouseleave() 事件委托 canvas的一些方法 如:绘制 ...

  3. Android自动解析html带图片,实现图文混排

    在android中,如何将html代码转换为text,然后显示在textview中呢,有一个简单直接的方法: textView.setText(Html.fromHtml(content)); 然而用 ...

  4. Spring之AOP详解

    文章大纲 一.AOP介绍二.Spring的AOP实战三.AOP常用标签四.项目源码及参考资料下载五.参考文章   一.AOP介绍 1. 什么是AOP 在软件业,AOP为Aspect Oriented ...

  5. 同事搭一个测试RAC说节点2发现idle了,报ORA-00304

    [oracle@testrac2 11204]$ sqlplus / as sysdba SQL*Plus: Release 11.2.0.4.0 Production on Wed Jan 16 1 ...

  6. Linux记录~持续更新~

    ls -ildha /etc -i 显示对应id号 唯一标识 -l 显示详情 -d 显示当前文件夹 不包括子目录 -h 单位为KB 而不是B -a 显示所有 包括隐藏文件 mkdir mkdir -p ...

  7. 使用whistle模拟cgi接口异常:错误码、502、慢网速、超时

    绝大多数程序只考虑了接口正常工作的场景,而用户在使用我们的产品时遇到的各类异常,全都丢在看似 ok 的 try catch 中.如果没有做好异常的兼容和兜底处理,会极大的影响用户体验,严重的还会带来安 ...

  8. 距离度量以及python实现(一)

    1. 欧氏距离(Euclidean Distance)        欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式. (1)二维平面上两点a(x1,y1)与b(x2,y2)间 ...

  9. Python:SQLMap源码精读—基于时间的盲注(time-based blind)

    建议阅读 Time-Based Blind SQL Injection Attacks 基于时间的盲注(time-based blind) 测试应用是否存在SQL注入漏洞时,经常发现某一潜在的漏洞难以 ...

  10. .NET Core微服务之基于MassTransit实现数据最终一致性(Part 1)

    Tip: 此篇已加入.NET Core微服务基础系列文章索引 一.预备知识:数据一致性 关于数据一致性的文章,园子里已经有很多了,如果你还不了解,那么可以通过以下的几篇文章去快速地了解了解,有个感性认 ...