题目链接

【洛谷】
【BZOJ】没有权限号嘤嘤嘤。题号:3545

题解

窝不会克鲁斯卡尔重构树怎么办???
可以离线乱搞。
我们将所有的操作全都存下来。
为了解决小于等于\(x\)的操作,那么我们按照长度来排一个序。
如果询问和加边长度相同,这加边优先。
对于每一个连通块进行权值线段树。
权值线段树解决\(k\)大的问题。
每一次合并,并查集判联通,线段树暴力合并。
时间复杂度\(O(nlogn)\)。

代码

#include <bits/stdc++.h>
using namespace std;
namespace IOstream {
    #define gc getchar
    template <typename T>
    inline void read(T &x) {
        x = 0; T fl = 1; char c = 0;
        for (; c < '0' || c > '9'; c = gc())
            if (c == '-') fl = -1;
        for (; c >= '0' && c <= '9'; c = gc())
            x = (x << 1) + (x << 3) + (c ^ 48);
        x *= fl;
    }
    #undef gc
} using namespace IOstream;
int n, m, q;
const int N = 100000 + 5;
int val[N], id[N];
namespace seg {
    #define ls(x) tr[x].lc
    #define rs(x) tr[x].rc
    struct node {
        int lc, rc, s; node() { lc = rc = s = 0; }
    } tr[N * 50];
    int tot = 0;
    void upd(int &k, int l, int r, int val) {
        if (!k) k = ++ tot;
        tr[k].s = 1;
        if (l == r) return;
        int mid = (l + r) >> 1;
        if (val <= mid) upd(ls(k), l, mid, val);
        else upd(rs(k), mid + 1, r, val);
    }
    int kth(int k, int l, int r, int rk) {
        if (l == r) return l;
        int mid = (l + r) >> 1;
        if (rk <= tr[ls(k)].s) return kth(ls(k), l, mid, rk);
        else return kth(rs(k), mid + 1, r, rk - tr[ls(k)].s);
    }
    int merge(int x, int y) {
        if (!x || !y) return x + y;
        if (!ls(x) && !rs(x)) { tr[x].s += tr[y].s; return x; }
        ls(x) = merge(ls(x), ls(y));
        rs(x) = merge(rs(x), rs(y));
        tr[x].s = tr[ls(x)].s + tr[rs(x)].s;
        return x;
    }
}
struct ASK {
    int a, b, c, d, id;
} Q[N * 10];
int fa[N], rt[N], ans[5 * N];
bool cmp_ASK(ASK A, ASK B) {
    return A.c == B.c ? A.d < B.d : A.c < B.c;
}
int gf(int x) {
    return x == fa[x] ? fa[x] : fa[x] = gf(fa[x]);
}
signed main() {
    read(n); read(m); read(q);
    for (int i = 1; i <= n; i ++) read(val[i]), id[i] = val[i], fa[i] = i;
    sort(id + 1, id + 1 + n);
    for (int i = 1; i <= n; i ++)
        val[i] = lower_bound(id + 1, id + 1 + n, val[i]) - id;
    for (int i = 1; i <= m; i ++)
        read(Q[i].a), read(Q[i].b), read(Q[i].c), Q[i].d = 0;
    for (int i = m + 1; i <= m + q; i ++)
        read(Q[i].a), read(Q[i].c), read(Q[i].b), Q[i].d = 1, Q[i].id = i - m;
    sort(Q + 1, Q + 1 + m + q, cmp_ASK);
    for (int i = 1; i <= n; i ++) seg::upd(rt[i], 1, n, val[i]);
    for (int i = 1; i <= m + q; i ++) {
        if (!Q[i].d) {
            int x = gf(Q[i].a), y = gf(Q[i].b);
            if (x != y) {
                fa[x] = y;
                rt[y] = seg::merge(rt[x], rt[y]);
            }
        } else {
            int x = gf(Q[i].a);
            if (seg::tr[rt[x]].s < Q[i].b) ans[Q[i].id] = -1;
            else ans[Q[i].id] = id[seg::kth(rt[x], 1, n, seg::tr[rt[x]].s - Q[i].b + 1)];
        }
    }
    for (int i = 1; i <= q; i ++) printf("%d\n", ans[i]);
    return 0;
}

「洛谷4197」「BZOJ3545」peak【线段树合并】的更多相关文章

  1. 洛谷P4577 [FJOI2018]领导集团问题(dp 线段树合并)

    题意 题目链接 Sol 首先不难想到一个dp,设\(f[i][j]\)表示\(i\)的子树内选择的最小值至少为\(j\)的最大个数 转移的时候维护一个后缀\(mx\)然后直接加 因为后缀max是单调不 ...

  2. 2018.08.11 洛谷P3224 [HNOI2012]永无乡(线段树合并)

    传送门 给出n个带点权的点,支持连边和查询连通块第k大. 这个貌似就是一道线段树合并的裸板啊... 代码: #include<bits/stdc++.h> #define N 100005 ...

  3. 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】

    题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...

  4. 洛谷P2982 [USACO10FEB]慢下来Slowing down(线段树 DFS序 区间增减 单点查询)

    To 洛谷.2982 慢下来Slowing down 题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) cows con ...

  5. Bzoj1018/洛谷P4246 [SHOI2008]堵塞的交通(线段树分治+并查集)

    题面 Bzoj 洛谷 题解 考虑用并查集维护图的连通性,接着用线段树分治对每个修改进行分治. 具体来说,就是用一个时间轴表示图的状态,用线段树维护,对于一条边,我们判断如果他的存在时间正好在这个区间内 ...

  6. 洛谷 P1083 借教室【二分+差分/线段树】

    二分mid,然后用1~mid的操作在差分序列上加减,最后把差分序列前缀和起来,看是否有有超过初始r值的 #include<iostream> #include<cstdio> ...

  7. 【洛谷4219】[BJOI2014]大融合(线段树分治)

    题目: 洛谷4219 分析: 很明显,查询的是删掉某条边后两端点所在连通块大小的乘积. 有加边和删边,想到LCT.但是我不会用LCT查连通块大小啊.果断弃了 有加边和删边,还跟连通性有关,于是开始yy ...

  8. LOJ2537. 「PKUWC2018」Minimax【概率DP+线段树合并】

    LINK 思路 首先暴力\(n^2\)是很好想的,就是把当前节点概率按照权值大小做前缀和和后缀和然后对于每一个值直接在另一个子树里面算出贡献和就可以了,注意乘上选最大的概率是小于当前权值的部分,选最小 ...

  9. 洛谷P2178 [NOI2015]品酒大会(后缀自动机 线段树)

    题意 题目链接 Sol 说一个后缀自动机+线段树的无脑做法 首先建出SAM,然后对parent树进行dp,维护最大次大值,最小次小值 显然一个串能更新答案的区间是\([len_{fa_{x}} + 1 ...

随机推荐

  1. python 正则验证 IP地址与MAC地址

    #coding=utf-8 import re def isValidIp(ip): if re.match(r"^\s*\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3} ...

  2. css 椭圆样式

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. FreeNas搭建踩坑指南(一)

    0x00 背景 最近公司的旧群晖服务器Raid6,因为同时坏了两块硬盘存储池损毁,所以领导决定买了Dell R730自己搭NAS,选来选去最后选了FreeNAS,这里记录一些踩过的坑. 0x01 问题 ...

  4. [C#学习笔记1]用csc.exe和记事本写一个C#应用程序

    csc.exe是C#的命令行编译器(CSharpCompiler),可以编译C#源程序成可执行程序.它与Visual Studio等IDE(Integrated Development Environ ...

  5. [算法&数据结构]深度优先搜索(Depth First Search)

    深度优先 搜索(DFS, Depth First Search) 从一个顶点v出发,首先将v标记为已遍历的顶点,然后选择一个邻接于v的尚未遍历的顶点u,如果u不存在,本次搜素终止.如果u存在,那么从u ...

  6. Delphi IfThen语句

    function IfThen(AValue: Boolean; const ATrue: string; AFalse: string = ''): string; overload; $[StrU ...

  7. C语言字符数组回顾

    赋值篇: Part1      错误引例*2: char c6[];//WRONG c6="HELLO";//WRONG char c7[];//WRONG c7[]='H';// ...

  8. Linux SVN安装

    step1:检查是否已经安装Svn Server. svnserve --version step2:执行安装 step3:创建代码仓库 进入对应目录: 说明: conf:配置文件 db:数据存储文件 ...

  9. Java设计模式视频讲解

    设计模式(JAVA) 视频网址: http://www.qghkt.com/ 设计模式(JAVA)视频地址: https://ke.qq.com/course/318643?tuin=a508ea62 ...

  10. 如何取消Microsoft账户登录电脑

    手贱用Microsoft账户登录了一下笔记本里面的日历,TNND微软直接就把你电脑的登录账户直接改成了微软账户,花了1个小时才搞回去. 步骤如下: 0--脑残微软的设计,点了下日历,弹出下面这个,绝对 ...