第一类斯特林数

在这里我因为懒所以还是用\(S(n,m)\)表示第一类斯特林数,但一定要和第二类斯特林数区分开来

递推式

\(S(n,m)=S(n-1.m-1)+S(n-1,m)*(n-1)\)

其中\(S(0,0)=1,S(i,0)=0(i>0)\)

组合意义

\(n\)个元素组成\(m\)个圆排列的方案数

注意这里圆排列指的是两个排列经过旋转能重合的算一种方案

那么递推式就可以这样理解:对于当前的第\(n\)个元素,单独成一个圆排列有\(S(n-1,m-1)\)种方案,放在其它的圆排列中有\(S(n-1,m)*(n-1)\)种方案,即放在每个元素的左侧(右侧等价于另一个元素的左侧)

性质

1、\(S(n,1)=(n-1)!\)

圆排列定义

2、\(\sum_{i=1}^{n}S(n,i)=n!\)

我们知道\(1-n\)这\(n\)个元素能形成\(n!\)个个排列,也就是\(n!\)个置换,而将置换写成循环的形式,这又对应着一个圆排列,于是就建立起了\(n\)排列和第一类斯特林数一一对应的关系

3、\(x^\underline{n}=\sum_{i=0}^nS(n.i)(-1)^{n-i}x^i\),\(x^\overline{n}=\sum_{i=0}^nS(n,i)x^i\)

证明的话考虑数学归纳法,这里仅给出第一条的证明
\[
\begin{aligned}
x^{\underline{n+1}}=&(x-n)x^{\underline{n}}\\
=&(x-n)\sum_{i=0}^nS(n,i)(-1)^{n-i}x^i\\
=&\sum_{i=0}^nS(n,i)(-1)^{n-i}x^{i+1}-n\sum_{i=0}^nS(n,i)(-1)^{n-i}x^i\\
=&\sum_{i=1}^{n+1}S(n,i-1)(-1)^{n-i+1}x^i+n\sum_{i=0}^nS(n.i)(-1)^{n-i+1}x^i\\
=&\sum_{i=0}^{n+1}(S(n,i-1)+nS(n.i))(-1)^{n-i+1}x^i\\
=&\sum_{i=0}^{n+1}S(n+1,i)(-1)^{n-i+1}x^i
\end{aligned}
\]

求解第一类斯特林数

最普通的方法就是\(O(n^2)\)的递推啦,考虑有没有更优的方法

我们先丢结论:
\[
S(n,m)=[x^m]\prod_{i=0}^{n-1}(x+i)
\]
计算右式的话可以使用分治+NTT在\(O(nlog^2n)\)的时间内解决,但是这么做的理由是什么?

设现在求的是\(S(n,m)\)我们记\(f_n(x)=\prod_{i=0}^{n-1}(x+1)\),然后把这个式子写成类似于递推的形式:
\[
f_n(x)=(x+n-1)f_{n-1}(x)=xf_{n-1}(x)+(n-1)f_{n-1}(x)
\]
第一项\(xf_{n-1}(x)\)就相当于\(S(n-1,m-1)\),第二项\((n-1)f_{n-1}(x)\)就相当于\((n-1)*S(n-1,m)\),也就是说这个式子对应的递推式就是\(S(n,m)=S(n-1,m-1)+(n-1)*S(n-1,m)\),正确性也就显然了

特殊计数序列——第一类斯特林(stirling)数的更多相关文章

  1. 【HDU 4372】 Count the Buildings (第一类斯特林数)

    Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  2. hdu 4372 第一类stirling数的应用/。。。好题

    /** 大意: 给定一系列楼房,都在一条水平线上,高度从1到n,从左侧看能看到f个, 从右侧看,能看到b个,问有多少种这样的序列.. 思路: 因为肯定能看到最高的,,那我们先假定最高的楼房位置确定,那 ...

  3. 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation

    目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...

  4. CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增

    传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...

  5. HDU3625(SummerTrainingDay05-N 第一类斯特林数)

    Examining the Rooms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  6. 组合计数 && Stirling数

    参考: http://blog.csdn.net/qwb492859377/article/details/50654627 http://blog.csdn.net/acdreamers/artic ...

  7. CF960G(第一类斯特林数)

    题目 CF960G 做法 设\(f(i,j)\)为\(i\)个数的序列,有\(j\)个前缀最大值的方案数 我们考虑每次添一个最小数,则有:\(f(i,j)=f(i-1,j)+(i-1)*f(i-1,j ...

  8. UVA11077 Find the Permutations —— 置换、第一类斯特林数

    题目链接:https://vjudge.net/problem/UVA-11077 题意: 问n的全排列中多有少个至少需要交换k次才能变成{1,2,3……n}. 题解: 1.根据过程的互逆性,可直接求 ...

  9. CF960G Bandit Blues(第一类斯特林数)

    传送门 可以去看看litble巨巨关于第一类斯特林数的总结 设\(f(i,j)\)为\(i\)个数的排列中有\(j\)个数是前缀最大数的方案数,枚举最小的数的位置,则有递推式\(f(i,j)=f(i- ...

随机推荐

  1. 基于Windows服务的WCF

    (1)创建WCF 代码示例: [ServiceContract] public interface ILimsDBService { [OperationContract] int ExecuteSq ...

  2. ## 本篇文章对linux常用的一些命令做一下总结,如有需要补充以及不懂得地方,请在下方留言 适合于linux初学者,以及对命令掌握不牢的用来备忘

    本篇文章对linux常用的一些命令做一下总结,如有需要补充以及不懂得地方,请在下方留言 适合于linux初学者,以及对命令掌握不牢的用来备忘一,磁盘管理1.显示当前目录位置 pwd2.切换目录 cd ...

  3. SQL Server 一列或多列重复数据的查询,删除(转载)

    转载来源:https://www.cnblogs.com/sunxi/p/4572332.html 业务需求 最近给公司做一个小工具,把某个数据库(数据源)的数据导进另一个数据(目标数据库).要求导入 ...

  4. Redis Cluster搭建高可用Redis服务器集群

    一.Redis Cluster集群简介 Redis Cluster是Redis官方提供的分布式解决方案,在3.0版本后推出的,有效地解决了Redis分布式的需求,当一个节点挂了可以快速的切换到另一个节 ...

  5. jQuery(七)、效果和动画

    1 显示和隐藏 1.show([speed,[easing],[fn]]) 显示隐藏的匹配元素. 参数: (1) spend:三种预定速度之一的字符串('show','normal','fast')或 ...

  6. Poj1477

    Box of Bricks Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24101   Accepted: 9378 De ...

  7. 重写Ext中的typeOf函数

    重写Ext中的typeOf函数来解决Ext JS中typeOf对字符串对象.元素节点.文本节点.空白文本节点判断并不准确的问题 重写的typeOf函数使用自己实现的TypeOf函数2中的代码 测试代码 ...

  8. Django常见问题

    1.什么是中间件? 中间件是介于request与response处理之间的一道处理过程,相对比较轻量级,并且在全局上改变django的输入与输出. 中间件一般做认证或批量请求处理,django中的中间 ...

  9. ArcPy 重命名拷贝删除图层

    使用Python脚本进行图层的重命名拷贝及删除,并在过程中利用logging进行日志记录. 附上Python代码: # -*- coding: utf-8 -*- # nightroad import ...

  10. asp.net core 集成 log4net 日志框架

    asp.net core 集成 log4net 日志框架 Intro 在 asp.net core 中有些日志我们可能想输出到数据库或文件或elasticsearch等,如果不自己去实现一个 Logg ...