特殊计数序列——第一类斯特林(stirling)数
第一类斯特林数
在这里我因为懒所以还是用\(S(n,m)\)表示第一类斯特林数,但一定要和第二类斯特林数区分开来
递推式
\(S(n,m)=S(n-1.m-1)+S(n-1,m)*(n-1)\)
其中\(S(0,0)=1,S(i,0)=0(i>0)\)
组合意义
\(n\)个元素组成\(m\)个圆排列的方案数
注意这里圆排列指的是两个排列经过旋转能重合的算一种方案
那么递推式就可以这样理解:对于当前的第\(n\)个元素,单独成一个圆排列有\(S(n-1,m-1)\)种方案,放在其它的圆排列中有\(S(n-1,m)*(n-1)\)种方案,即放在每个元素的左侧(右侧等价于另一个元素的左侧)
性质
1、\(S(n,1)=(n-1)!\)
圆排列定义
2、\(\sum_{i=1}^{n}S(n,i)=n!\)
我们知道\(1-n\)这\(n\)个元素能形成\(n!\)个个排列,也就是\(n!\)个置换,而将置换写成循环的形式,这又对应着一个圆排列,于是就建立起了\(n\)排列和第一类斯特林数一一对应的关系
3、\(x^\underline{n}=\sum_{i=0}^nS(n.i)(-1)^{n-i}x^i\),\(x^\overline{n}=\sum_{i=0}^nS(n,i)x^i\)
证明的话考虑数学归纳法,这里仅给出第一条的证明
\[
\begin{aligned}
x^{\underline{n+1}}=&(x-n)x^{\underline{n}}\\
=&(x-n)\sum_{i=0}^nS(n,i)(-1)^{n-i}x^i\\
=&\sum_{i=0}^nS(n,i)(-1)^{n-i}x^{i+1}-n\sum_{i=0}^nS(n,i)(-1)^{n-i}x^i\\
=&\sum_{i=1}^{n+1}S(n,i-1)(-1)^{n-i+1}x^i+n\sum_{i=0}^nS(n.i)(-1)^{n-i+1}x^i\\
=&\sum_{i=0}^{n+1}(S(n,i-1)+nS(n.i))(-1)^{n-i+1}x^i\\
=&\sum_{i=0}^{n+1}S(n+1,i)(-1)^{n-i+1}x^i
\end{aligned}
\]
求解第一类斯特林数
最普通的方法就是\(O(n^2)\)的递推啦,考虑有没有更优的方法
我们先丢结论:
\[
S(n,m)=[x^m]\prod_{i=0}^{n-1}(x+i)
\]
计算右式的话可以使用分治+NTT在\(O(nlog^2n)\)的时间内解决,但是这么做的理由是什么?
设现在求的是\(S(n,m)\)我们记\(f_n(x)=\prod_{i=0}^{n-1}(x+1)\),然后把这个式子写成类似于递推的形式:
\[
f_n(x)=(x+n-1)f_{n-1}(x)=xf_{n-1}(x)+(n-1)f_{n-1}(x)
\]
第一项\(xf_{n-1}(x)\)就相当于\(S(n-1,m-1)\),第二项\((n-1)f_{n-1}(x)\)就相当于\((n-1)*S(n-1,m)\),也就是说这个式子对应的递推式就是\(S(n,m)=S(n-1,m-1)+(n-1)*S(n-1,m)\),正确性也就显然了
特殊计数序列——第一类斯特林(stirling)数的更多相关文章
- 【HDU 4372】 Count the Buildings (第一类斯特林数)
Count the Buildings Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
- hdu 4372 第一类stirling数的应用/。。。好题
/** 大意: 给定一系列楼房,都在一条水平线上,高度从1到n,从左侧看能看到f个, 从右侧看,能看到b个,问有多少种这样的序列.. 思路: 因为肯定能看到最高的,,那我们先假定最高的楼房位置确定,那 ...
- 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation
目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...
- CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增
传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...
- HDU3625(SummerTrainingDay05-N 第一类斯特林数)
Examining the Rooms Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- 组合计数 && Stirling数
参考: http://blog.csdn.net/qwb492859377/article/details/50654627 http://blog.csdn.net/acdreamers/artic ...
- CF960G(第一类斯特林数)
题目 CF960G 做法 设\(f(i,j)\)为\(i\)个数的序列,有\(j\)个前缀最大值的方案数 我们考虑每次添一个最小数,则有:\(f(i,j)=f(i-1,j)+(i-1)*f(i-1,j ...
- UVA11077 Find the Permutations —— 置换、第一类斯特林数
题目链接:https://vjudge.net/problem/UVA-11077 题意: 问n的全排列中多有少个至少需要交换k次才能变成{1,2,3……n}. 题解: 1.根据过程的互逆性,可直接求 ...
- CF960G Bandit Blues(第一类斯特林数)
传送门 可以去看看litble巨巨关于第一类斯特林数的总结 设\(f(i,j)\)为\(i\)个数的排列中有\(j\)个数是前缀最大数的方案数,枚举最小的数的位置,则有递推式\(f(i,j)=f(i- ...
随机推荐
- 程序猿想聊天 - 創問 4C 團隊教練心得(一)
今天難得參加了創問舉辦的 4C 團隊教練課程 From : http://www.cccoach.cn/Home/Activity/show/id/449.html 整個課程主要圍繞著 Common ...
- 物联网RFID技术之应用ETC系统
背景 信息物理系统CPS通过集成先进的感知.计算.通 信.控制等信息技术和自动控制技术,构建了物理空间与信息空间中人. 机.物.环境.信息等要素相互映射.适时交互.高效协同的复杂系统, 实现系统内资源 ...
- 项目开发过程中什么是开发环境、测试环境、生产环境、UAT环境、仿真环境?
项目开发过程中什么是开发环境.测试环境.生产环境.UAT环境.仿真环境? 最近在公司项目开发过程中总用到测试环境,生产环境和UAT环境等,然而我对环境什么的并不是很理解它的意思,一直处于开发阶段,出于 ...
- 用JS在html页面实现打印功能
首先在head里面加入下面一段js代码: <script language="javascript"> function preview(oper) { if (ope ...
- VS Code怎样设置成中文
打开 VS Code Ctrl + Shift +p打开搜索框 搜索框内输入Configure Display Language 回车 修改代码中“locale”后面引号内内容为zh-CH 重新启动V ...
- 开源GIS知识
---恢复内容开始--- 2.1.3组件层 数据库组件层按照功能可分为两类:数据管理组件和分析组件. 2.1.3.1数据管理组件 (1)GDAL GDAL(http://www.gdal.org/)是 ...
- typescript中的接口
说到接口:在面向对象的编程中,接口是一种规范的定义,它定义了行为和动作的规范,在程序设计里面,接口起到一种限制和规范的作用.接口定义了某一批类所需要遵守的规范,接口不关心这些类的内部状态数据,也不关心 ...
- HTTP中GET和POST的区别主要是那些,面试中可以加分的该说那些?
面试回答: GET请求在URL中传送的参数是有长度限制的,而POST没有. GET比POST更不安全,因为参数直接暴露在URL上,所以不能用来传递敏感信息. GET参数通过URL传递,POST放在Re ...
- SQL ----post漏洞测试注入
使用工具sqlmap 输入账号密码进行bp截断,获取文本保存在sqlmap下面2.txt 爆数据库 爆表爆表 爆数据 最后把数据密码md5解析
- 如何查看linux中文件打开情况
前言 我们都知道,在linux下,“一切皆文件”,因此有时候查看文件的打开情况,就显得格外重要,而这里有一个命令能够在这件事上很好的帮助我们-它就是lsof. linux下有哪些文件 在介绍lsof命 ...