之所以写这篇随笔,是因为参考文章(见文尾)中的的代码是Python2的,放到Python3上无法运行,我花了些时间debug,并记录了调试经过。

参考文章中的代码主要有两处不兼容Python3,一个是lambda函数的使用,另一个是map()的使用。

先放我修改调试后的代码和运行结果,再记录调试经过。

源代码:

 #coding=utf-8

 from functools import reduce  # for py3

 class Perceptron(object):
def __init__(self, input_num, activator):
'''
初始化感知器,设置输入参数的个数,以及激活函数。
激活函数的类型为double -> double
'''
self.activator = activator
# 权重向量初始化为0
self.weights = [0.0 for _ in range(input_num)]
# 偏置项初始化为0
self.bias = 0.0
def __str__(self):
'''
打印学习到的权重、偏置项
'''
return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias) def predict(self, input_vec):
'''
输入向量,输出感知器的计算结果
'''
# 把input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]打包在一起
# 变成[(x1,w1),(x2,w2),(x3,w3),...]
# 然后利用map函数计算[x1*w1, x2*w2, x3*w3]
# 最后利用reduce求和 #list1 = list(self.weights)
#print ("predict self.weights:", list1) return self.activator(
reduce(lambda a, b: a + b,
list(map(lambda tp: tp[0] * tp[1], # HateMath修改
zip(input_vec, self.weights)))
, 0.0) + self.bias)
def train(self, input_vecs, labels, iteration, rate):
'''
输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率
'''
for i in range(iteration):
self._one_iteration(input_vecs, labels, rate) def _one_iteration(self, input_vecs, labels, rate):
'''
一次迭代,把所有的训练数据过一遍
'''
# 把输入和输出打包在一起,成为样本的列表[(input_vec, label), ...]
# 而每个训练样本是(input_vec, label)
samples = zip(input_vecs, labels)
# 对每个样本,按照感知器规则更新权重
for (input_vec, label) in samples:
# 计算感知器在当前权重下的输出
output = self.predict(input_vec)
# 更新权重
self._update_weights(input_vec, output, label, rate) def _update_weights(self, input_vec, output, label, rate):
'''
按照感知器规则更新权重
'''
# 把input_vec[x1,x2,x3,...]和weights[w1,w2,w3,...]打包在一起
# 变成[(x1,w1),(x2,w2),(x3,w3),...]
# 然后利用感知器规则更新权重
delta = label - output
self.weights = list(map( lambda tp: tp[1] + rate * delta * tp[0], zip(input_vec, self.weights)) ) # HateMath修改 # 更新bias
self.bias += rate * delta print("_update_weights() -------------")
print("label - output = delta:" ,label, output, delta)
print("weights ", self.weights)
print("bias", self.bias) def f(x):
'''
定义激活函数f
'''
return 1 if x > 0 else 0 def get_training_dataset():
'''
基于and真值表构建训练数据
'''
# 构建训练数据
# 输入向量列表
input_vecs = [[1,1], [0,0], [1,0], [0,1]]
# 期望的输出列表,注意要与输入一一对应
# [1,1] -> 1, [0,0] -> 0, [1,0] -> 0, [0,1] -> 0
labels = [1, 0, 0, 0]
return input_vecs, labels def train_and_perceptron():
'''
使用and真值表训练感知器
'''
# 创建感知器,输入参数个数为2(因为and是二元函数),激活函数为f
p = Perceptron(2, f)
# 训练,迭代10轮, 学习速率为0.1
input_vecs, labels = get_training_dataset()
p.train(input_vecs, labels, 10, 0.1)
#返回训练好的感知器
return p if __name__ == '__main__':
# 训练and感知器
and_perception = train_and_perceptron()
# 打印训练获得的权重 # 测试
print (and_perception)
print ('1 and 1 = %d' % and_perception.predict([1, 1]))
print ('0 and 0 = %d' % and_perception.predict([0, 0]))
print ('1 and 0 = %d' % and_perception.predict([1, 0]))
print ('0 and 1 = %d' % and_perception.predict([0, 1]))

运行输出:

======================== RESTART: F:\桌面\Perceptron.py ========================
_update_weights() -------------
label - output = delta: 1 0 1
weights [0.1, 0.1]
bias 0.1
_update_weights() -------------
label - output = delta: 0 1 -1
weights [0.1, 0.1]
bias 0.0
_update_weights() -------------
label - output = delta: 0 1 -1
weights [0.0, 0.1]
bias -0.1
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.0, 0.1]
bias -0.1
_update_weights() -------------
label - output = delta: 1 0 1
weights [0.1, 0.2]
bias 0.0
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias 0.0
_update_weights() -------------
label - output = delta: 0 1 -1
weights [0.0, 0.2]
bias -0.1
_update_weights() -------------
label - output = delta: 0 1 -1
weights [0.0, 0.1]
bias -0.2
_update_weights() -------------
label - output = delta: 1 0 1
weights [0.1, 0.2]
bias -0.1
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.1
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.1
_update_weights() -------------
label - output = delta: 0 1 -1
weights [0.1, 0.1]
bias -0.2
_update_weights() -------------
label - output = delta: 1 0 1
weights [0.2, 0.2]
bias -0.1
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.2, 0.2]
bias -0.1
_update_weights() -------------
label - output = delta: 0 1 -1
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 1 1 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 1 1 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 1 1 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 1 1 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 1 1 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 1 1 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
weights :[0.1, 0.2]
bias :-0.200000 1 and 1 = 1
0 and 0 = 0
1 and 0 = 0
0 and 1 = 0

可以看到,最后训练出来的权重是 [0.1, 0.2],偏置 -0.2,根据感知机模型得到公式:f(x, y) = 0.1x + 0.2y -0.2

可以看到是个三维平面,这个平面实现了对样本中4个三维空间点分类。

调试经过:

1. lambda表达式的使用

第38和第70行中,原适用于Python2.7的代码无法正常运行,提示 invalid syntax。貌似是Python3中,在lambda表达式中使用元组的方式和Python2.7不一样。

我改了一下代码,语法问题没有了,可是预测结果不正常。于是就打印map()函数的返回值,试图调试。

2. 打印map()函数返回的对象

参见 https://www.cnblogs.com/lyy-totoro/p/7018597.html 的代码,先转为list再打印。

list1 = list(data)

print(list1)

打印输出表明,训练的值明显不对,到底是哪里的问题?

3. 真相【小】白

https://segmentfault.com/a/1190000000322433

关键句:在Python3中,如果不在map函数前加上list,lambda函数根本就不会执行。

于是加上list,就变成了最终的代码,工作正常。

只是“lambda函数根本就不会执行”这句,我没考证过,所以说真相小白。

 

原文链接:

零基础入门深度学习(1) - 感知器

https://www.zybuluo.com/hanbingtao/note/433855

用感知机(Perceptron)实现逻辑AND功能的Python3代码的更多相关文章

  1. 2. 感知机(Perceptron)基本形式和对偶形式实现

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  2. 利用sublime的snippet功能快速创建代码段

    在前端开发中我们经常会输入相同的一些基本代码,例如常用的jquery引用,bootstrap框架,cssreset等等,如果每次使用时在复制粘贴感觉很麻烦,这里介绍一种更为简洁的方法 利用sublim ...

  3. discuz论坛apache日志hadoop大数据分析项目:清洗数据核心功能解说及代码实现

    discuz论坛apache日志hadoop大数据分析项目:清洗数据核心功能解说及代码实现http://www.aboutyun.com/thread-8637-1-1.html(出处: about云 ...

  4. 全国天气预报信息数据 API 功能简介与代码调用实战视频

    此文章对开放数据接口 API 之「全国天气预报信息数据 API」进行了功能介绍.使用场景介绍以及调用方法的说明,供用户在使用数据接口时参考之用,并对实战开发进行了视频演示. 1. 产品功能 接口开放了 ...

  5. 感知机(perceptron)概念与实现

    感知机(perceptron) 模型: 简答的说由输入空间(特征空间)到输出空间的如下函数: \[f(x)=sign(w\cdot x+b)\] 称为感知机,其中,\(w\)和\(b\)表示的是感知机 ...

  6. 20151227感知机(perceptron)

    1 感知机 1.1 感知机定义 感知机是一个二分类的线性分类模型,其生成一个分离超平面将实例的特征向量,输出为+1,-1.导入基于误分类的损失函数,利用梯度下降法对损失函数极小化,从而求得此超平面,该 ...

  7. 感知机(perceptron)

  8. 神经网络 感知机 Perceptron python实现

    import numpy as np import matplotlib.pyplot as plt import math def create_data(w1=3,w2=-7,b=4,seed=1 ...

  9. jquery.cookie.js 操作cookie实现记住密码功能的实现代码

    jquery.cookie.js操作cookie实现记住密码功能,很简单很强大,喜欢的朋友可以参考下.   复制代码代码如下: //初始化页面时验证是否记住了密码 $(document).ready( ...

随机推荐

  1. Android ui 透明度设置

    格式如#00FFFFFF,前两位代表不透明度的十六进制.00表示完全透明,FF就是全不透明.依次递增. <?xml version="1.0" encoding=" ...

  2. Linux安装JDK、MySQL和Tomcat

    1 依赖的安装 因为JDK.Tomcat和MySQL的安装过程中需要从网上下载部分支持包才可以继续,所以需要提前安装好依赖. yum install glibc.1686 yum -y install ...

  3. 小白成长系列--HTTP协议(一)

    序:小白成长系列是笔者使用最简单易懂的逻辑来解释常见的计算机相关知识,不仅理解,还让你记忆深刻\(^o^)/ 先理解什么是协议? 协议就是双方要做某件事情而制定的规则,而且双方必须要遵从协议所约定的内 ...

  4. 【视频编解码·学习笔记】5. NAL Unit 结构分析

    在上篇笔记中通过一个小程序,可以提取NAL Unit所包含的的字节数据.H.264码流中的每一个NAL Unit的作用并不是相同的,而是根据不同的类型起不同的作用.下面将对NAL Unit中的数据进行 ...

  5. Linux中变量#,@,0,1,2,*,$$,$?的意思

    $# 是传给脚本的参数个数 $0 是脚本本身的名字 $1 是传递给该shell脚本的第一个参数 $2 是传递给该shell脚本的第二个参数 $@ 是传给脚本的所有参数的列表 $* 是以一个单字符串显示 ...

  6. 04_Python Data Structures

    Python数据结构 数据结构:数据个体的存储 和 数据个体与个体之间关系的存储. Python中有:1.序列 2.映射类型 3.无序集合 序列:成员有序排列.通过下标偏移量进行访问.元组.字符串.列 ...

  7. Git知识总览(五) Git中的merge、rebase、cherry-pick以及交互式rebase

    上篇博客聊了<git分支管理之rebase 以及 cherry-pick相关操作>本篇博客我们就以Learning Git中的关卡进行展开.下方列举了LearningGit中的 merge ...

  8. php动态编辑zlib扩展

    linux系统上,在php已经编译安装的情况下,启用zlib扩展不是那么容易,需要动态编译 以下是编译步骤: cd ./ext/zlib mv config0.m4 config.m4 /usr/lo ...

  9. Netty(一):入门篇

    匠心零度 转载请注明原创出处,谢谢! 说在前面 上篇文章对Netty进行了初探:Netty初探,主要介绍了下我们为什么需要学习netty.netty介绍等:本篇文章接着上篇文章的内容.本篇为了方便大家 ...

  10. js实现点击切换显示隐藏,点击其它位置再隐藏

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...