Cheolsoo is a cryptographer in ICPC(International Cryptographic Program Company). Recently, Cheolsoo developed a cryptographic algorithm called ACM(Advanced Cryptographic Method). ACM uses a key to encrypt
a message. The encrypted message is called a cipher text. In ACM, to decrypt a cipher text, the same key used in the encryption should be applied. That is, the encryption key and the decryption key are the same. So, the sender and receiver should
agree on a key before they communicate securely using ACM. Soon after Cheolsoo finished the design of ACM, he asked its analysis on security to Younghee who is a cryptanalyst in ICPC.

Younghee has an interest in breaking cryptosystems. Actually, she developed many attacking methods for well-known cryptographic algorithms. Some cryptographic algorithms have weak keys. When a message is encrypted with a weak key, the message can be
recovered easily without the key from the cipher text. So, weak key should not be used when encrypting a message. After many trials, she found the characteristic of weak keys in ACM. ACM uses a sequence of mutually distinct positive integers (N1N2,..., Nk) as
a key. Younghee found that weak keys in ACM have the following two special patterns:

There are four integers NpNqNrNs(1p < q < r < sk) in
the key such that
(1) Nq > Ns > Np > Nr or Nq < Ns < Np < Nr

For example, the key (10, 30, 60, 40, 20, 50) has the pattern in (1); (_, 30, 60, _, 20, 50). So, the key is a weak key in ACM. But, the key (30, 40, 10, 20, 80, 50, 60, 70) is not weak because it does not have
any pattern in the above.

Now, Younghee wants to find an efficient method to determine, for a given key, whether it is a weak key or not. Write a program that can help Younghee.

Input

The input consists of T test cases. The number of test cases T is given in the first line of the input file. Each test case starts with a line
containing an integer k, the length of a sequence repressenting a key, 4k5,
000. In the next line, k mutually distinct positive integers are given. There is a single space between the integers, and the integers are between 1 and 100,000, both inclusive.

Output

Print exactly one line for each test case. Print `YES' if the sequence is a weak key. Otherwise, print `NO'.

The following shows sample input and output for three test cases.

Sample Input

3
6
10 30 60 40 20 50
8
30 40 10 20 80 50 60 70
4
1 2 20 9

Sample Output

YES
NO
NO

要求找到4个整数Np、Nq、Nr、Ns(1<= p < q < r < s <= k)s.t. Nq > Ns > Np > Nr or Nq < Ns < Np < Nr。

先看第一种情况,下标第二大的,值最大,而下标第三大的,值最小,下标最小和最大的都插在了中间,确定这个要求后,先想到dfs求解,但是考虑到5000这个数量比较大,怕函数进出栈太慢。

直接枚举四个值时间复杂度又太高了,所以只枚举两个,枚举Ns和Np,然后记录找到Nq和Nr。

用了两个标记数组, l[i][j] 表示下标小于j且值比Ni大的数中最小值的位置,r[i][j] 表示下标大于j且值比Ni小的数中最大值的位置。

最后在枚举判断就完成了第一种情况。第二种情况直接把数组翻转,然后在判断一次就行了。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <string>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <stack>
#include <queue>
#include <bitset>
#include <cassert>
#include <cmath>
#include <functional>

using namespace std;

const int maxn = 5005;
int num[maxn], l[maxn][maxn], r[maxn][maxn];
// l[i][j]表示下标小于j且值比Ni大的数中最小值的位置
// r[i][j]表示下标大于j且值比Ni小的数中最大值的位置
int k;

bool solve()
{
	for (int i = 1; i <= k; i++) {
		l[i][0] = 0;
		for (int j = 1; j < i; j++) { // 枚举Nq和Nr,找Np
			if (num[i] >= num[j]) {
				l[i][j] = l[i][j - 1];
			}
			else if (!l[i][j - 1] || num[j] < num[l[i][j - 1]]) {
				l[i][j] = j;
			}
			else {
				l[i][j] = l[i][j - 1];
			}
		}

	}

	for (int i = 1; i <= k; i++) {
		r[i][k + 1] = 0;
		for (int j = k; j > i; j--) {// 枚举Nq和Nr,找Ns
			if (num[i] <= num[j]) {
				r[i][j] = r[i][j + 1];
			}
			else if (!r[i][j + 1] || num[j] > num[r[i][j + 1]]) {
				r[i][j] = j;
			}
			else {
				r[i][j] = r[i][j + 1];
			}
		}
	}

	//i是q,j是r
	for (int i = 1; i <= k; i++) {
		for (int j = i + 1; j <= k; j++) {
			if (!l[j][i - 1] || !r[i][j + 1] || num[i] <= num[j]) {
				continue;
			}
			int p = l[j][i - 1], s = r[i][j + 1];
			if (num[j] < num[p] && num[p] < num[s] && num[s] < num[i]) {
				return true;
			}
		}
	}
	return false;
}

int main()
{
	ios::sync_with_stdio(false);
	int T;
	cin >> T;
	while (T--) {
		cin >> k;
		for (int i = 1; i <= k; i++) {
			cin >> num[i];
		}

		if (solve()) {
			cout << "YES\n";
		}
		else {
			reverse(num + 1, num + k + 1);
			if (solve()) {
				cout << "YES\n";
			}
			else {
				cout << "NO\n";
			}
		}
	}

	return 0;
}

UVa - 1618 - Weak Key的更多相关文章

  1. UVA - 1618 Weak Key(RMQ算法)

    题目: 给出k个互不相同的证书组成的序列Ni,判断是否存在4个证书Np.Nq.Nr.Ns(1≤p<q<r<s≤k)使得Nq>Ns>Np>Nr或者Nq<Ns&l ...

  2. 【习题 8-16 UVA - 1618】Weak Key

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 枚举N[q]和N[r]的位置 因为N[q]是最大值,且N[r]是最小值. 且它们是中间的两个. 枚举这两个可以做到不重复枚举. 然后 ...

  3. 弱键(Weak Key, ACM/ICPC Seoul 2004, UVa1618)

    I think: 给出k(4≤k≤5000)个互不相同的整数组成的序列Ni,判断是否存在4个整数Np.Nq.Nr和Ns(1≤p<q<r<s≤k),使得Nq>Ns>Np&g ...

  4. 紫书 习题 8-16 UVa 1618 (中途相遇法)

    暴力n的四次方, 然而可以用中途相遇法的思想, 分左边两个数和右边两个数来判断, 最后合起来判断. 一边是n平方logn, 合起来是n平方logn(枚举n平方, 二分logn) (1)两种比较方式是相 ...

  5. UVA1618-Weak Key(RMQ)

    Problem UVA1618-Weak Key Accept: 103  Submit: 588Time Limit: 3000 mSec Problem Description Cheolsoo ...

  6. 多线程爬坑之路-Thread和Runable源码解析

    多线程:(百度百科借一波定义) 多线程(英语:multithreading),是指从软件或者硬件上实现多个线程并发执行的技术.具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提 ...

  7. java中Map,List与Set的区别(转)

    Set,List,Map的区别 java集合的主要分为三种类型: Set(集) List(列表) Map(映射) 要深入理解集合首先要了解下我们熟悉的数组: 数组是大小固定的,并且同一个数组只能存放类 ...

  8. 浅谈Java中的Set、List、Map的区别(转)

    对JAVA的集合的理解是想对于数组: 数组是大小固定的,并且同一个数组只能存放类型一样的数据(基本类型/引用类型),JAVA集合可以存储和操作数目不固定的一组数据. 所有的JAVA集合都位于 java ...

  9. des (C语言)

    /** * \file des.h * * \brief DES block cipher * * Copyright (C) 2006-2010, Brainspark B.V. * * This ...

随机推荐

  1. linux shell数组

    from: http://www.jb51.net/article/34322.htm bash shell只支持一维数组,但参数个数没有限制. 声明一个数组:declare -a array(其实不 ...

  2. C++后台实践:古老的CGI与Web开发

    本文写给C/C++程序猿,也适合其他对历史感兴趣的程序猿 ============================================= 谈到web开发,大家首先想到的PHP.JavaEE ...

  3. JDBC线程池创建与DBCP源码阅读

    创建数据库连接是一个比较消耗性能的操作,同时在并发量较大的情况下创建过多的连接对服务器形成巨大的压力.对于资源的频繁分配﹑释放所造成的问题,使用连接池技术是一种比较好的解决方式. 在Java中,连接池 ...

  4. Android开发学习之路--Java和Js互相调用

      随着前端的火热,以前开发的快速,越来越多的native app在其中融合了h5,就拿淘宝就是很多的h5组成的,一旦出现什么节日,他都可以不用通过更新app来实现界面的改变,而且android和io ...

  5. git清空某个文件的历史版本

    比如你要清空文件private.ini git filter-branch --force --index-filter 'git rm --cached --ignore-unmatch priva ...

  6. Lucene 查询(Query)子类

    QueryParser(单域查询) QueryParser子类对单个域查询时创建查询query,构造方法中需要传入Lucene版本号,检索域名和分词器. QueryParser parser = ne ...

  7. XCode使用技巧

    XCode使用技巧 自动生成get.set方法 @property 用法 #import <Foundation/Foundation.h> @interface People : NSO ...

  8. PHP 针对多用户 实现头像更换

    成品图 思路 登陆页面 表单制作 验证码制作 JavaScript刷新验证码 验证页面 验证逻辑 页面跳转 header函数 Meta标签 JavaScript 上传页面 个人主页 上传核心 最终结果 ...

  9. ViewPager实现滑屏切换页面及动画效果(仿优酷客户端)

     找了许多实现该功能的例子,但效果都不很理想,于是自己结合网上的资源及自己的总结,整理了一下,发出来,供大家参考.这个是自己做的,仿优酷客户端的. 先看效果: ****************** ...

  10. android获取短信并自动填充

    package com.velo.quanquan.util; import java.util.regex.Matcher; import java.util.regex.Pattern; impo ...