UVa - 1618 - Weak Key
Cheolsoo is a cryptographer in ICPC(International Cryptographic Program Company). Recently, Cheolsoo developed a cryptographic algorithm called ACM(Advanced Cryptographic Method). ACM uses a key to encrypt
a message. The encrypted message is called a cipher text. In ACM, to decrypt a cipher text, the same key used in the encryption should be applied. That is, the encryption key and the decryption key are the same. So, the sender and receiver should
agree on a key before they communicate securely using ACM. Soon after Cheolsoo finished the design of ACM, he asked its analysis on security to Younghee who is a cryptanalyst in ICPC.
Younghee has an interest in breaking cryptosystems. Actually, she developed many attacking methods for well-known cryptographic algorithms. Some cryptographic algorithms have weak keys. When a message is encrypted with a weak key, the message can be
recovered easily without the key from the cipher text. So, weak key should not be used when encrypting a message. After many trials, she found the characteristic of weak keys in ACM. ACM uses a sequence of mutually distinct positive integers (N1, N2,..., Nk) as
a key. Younghee found that weak keys in ACM have the following two special patterns:
p < q < r < s
k) inthe key such that
For example, the key (10, 30, 60, 40, 20, 50) has the pattern in (1); (_, 30, 60, _, 20, 50). So, the key is a weak key in ACM. But, the key (30, 40, 10, 20, 80, 50, 60, 70) is not weak because it does not have
any pattern in the above.
Now, Younghee wants to find an efficient method to determine, for a given key, whether it is a weak key or not. Write a program that can help Younghee.
Input
The input consists of T test cases. The number of test cases T is given in the first line of the input file. Each test case starts with a line
containing an integer k, the length of a sequence repressenting a key, 4
k
5,
000. In the next line, k mutually distinct positive integers are given. There is a single space between the integers, and the integers are between 1 and 100,000, both inclusive.
Output
Print exactly one line for each test case. Print `YES' if the sequence is a weak key. Otherwise, print `NO'.
The following shows sample input and output for three test cases.
Sample Input
3 6 10 30 60 40 20 50 8 30 40 10 20 80 50 60 70 4 1 2 20 9
Sample Output
YES NO NO
要求找到4个整数Np、Nq、Nr、Ns(1<= p < q < r < s <= k)s.t. Nq > Ns > Np > Nr or Nq < Ns < Np < Nr。
先看第一种情况,下标第二大的,值最大,而下标第三大的,值最小,下标最小和最大的都插在了中间,确定这个要求后,先想到dfs求解,但是考虑到5000这个数量比较大,怕函数进出栈太慢。
直接枚举四个值时间复杂度又太高了,所以只枚举两个,枚举Ns和Np,然后记录找到Nq和Nr。
用了两个标记数组, l[i][j] 表示下标小于j且值比Ni大的数中最小值的位置,r[i][j] 表示下标大于j且值比Ni小的数中最大值的位置。
最后在枚举判断就完成了第一种情况。第二种情况直接把数组翻转,然后在判断一次就行了。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <string>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <stack>
#include <queue>
#include <bitset>
#include <cassert>
#include <cmath>
#include <functional>
using namespace std;
const int maxn = 5005;
int num[maxn], l[maxn][maxn], r[maxn][maxn];
// l[i][j]表示下标小于j且值比Ni大的数中最小值的位置
// r[i][j]表示下标大于j且值比Ni小的数中最大值的位置
int k;
bool solve()
{
for (int i = 1; i <= k; i++) {
l[i][0] = 0;
for (int j = 1; j < i; j++) { // 枚举Nq和Nr,找Np
if (num[i] >= num[j]) {
l[i][j] = l[i][j - 1];
}
else if (!l[i][j - 1] || num[j] < num[l[i][j - 1]]) {
l[i][j] = j;
}
else {
l[i][j] = l[i][j - 1];
}
}
}
for (int i = 1; i <= k; i++) {
r[i][k + 1] = 0;
for (int j = k; j > i; j--) {// 枚举Nq和Nr,找Ns
if (num[i] <= num[j]) {
r[i][j] = r[i][j + 1];
}
else if (!r[i][j + 1] || num[j] > num[r[i][j + 1]]) {
r[i][j] = j;
}
else {
r[i][j] = r[i][j + 1];
}
}
}
//i是q,j是r
for (int i = 1; i <= k; i++) {
for (int j = i + 1; j <= k; j++) {
if (!l[j][i - 1] || !r[i][j + 1] || num[i] <= num[j]) {
continue;
}
int p = l[j][i - 1], s = r[i][j + 1];
if (num[j] < num[p] && num[p] < num[s] && num[s] < num[i]) {
return true;
}
}
}
return false;
}
int main()
{
ios::sync_with_stdio(false);
int T;
cin >> T;
while (T--) {
cin >> k;
for (int i = 1; i <= k; i++) {
cin >> num[i];
}
if (solve()) {
cout << "YES\n";
}
else {
reverse(num + 1, num + k + 1);
if (solve()) {
cout << "YES\n";
}
else {
cout << "NO\n";
}
}
}
return 0;
}
UVa - 1618 - Weak Key的更多相关文章
- UVA - 1618 Weak Key(RMQ算法)
题目: 给出k个互不相同的证书组成的序列Ni,判断是否存在4个证书Np.Nq.Nr.Ns(1≤p<q<r<s≤k)使得Nq>Ns>Np>Nr或者Nq<Ns&l ...
- 【习题 8-16 UVA - 1618】Weak Key
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 枚举N[q]和N[r]的位置 因为N[q]是最大值,且N[r]是最小值. 且它们是中间的两个. 枚举这两个可以做到不重复枚举. 然后 ...
- 弱键(Weak Key, ACM/ICPC Seoul 2004, UVa1618)
I think: 给出k(4≤k≤5000)个互不相同的整数组成的序列Ni,判断是否存在4个整数Np.Nq.Nr和Ns(1≤p<q<r<s≤k),使得Nq>Ns>Np&g ...
- 紫书 习题 8-16 UVa 1618 (中途相遇法)
暴力n的四次方, 然而可以用中途相遇法的思想, 分左边两个数和右边两个数来判断, 最后合起来判断. 一边是n平方logn, 合起来是n平方logn(枚举n平方, 二分logn) (1)两种比较方式是相 ...
- UVA1618-Weak Key(RMQ)
Problem UVA1618-Weak Key Accept: 103 Submit: 588Time Limit: 3000 mSec Problem Description Cheolsoo ...
- 多线程爬坑之路-Thread和Runable源码解析
多线程:(百度百科借一波定义) 多线程(英语:multithreading),是指从软件或者硬件上实现多个线程并发执行的技术.具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提 ...
- java中Map,List与Set的区别(转)
Set,List,Map的区别 java集合的主要分为三种类型: Set(集) List(列表) Map(映射) 要深入理解集合首先要了解下我们熟悉的数组: 数组是大小固定的,并且同一个数组只能存放类 ...
- 浅谈Java中的Set、List、Map的区别(转)
对JAVA的集合的理解是想对于数组: 数组是大小固定的,并且同一个数组只能存放类型一样的数据(基本类型/引用类型),JAVA集合可以存储和操作数目不固定的一组数据. 所有的JAVA集合都位于 java ...
- des (C语言)
/** * \file des.h * * \brief DES block cipher * * Copyright (C) 2006-2010, Brainspark B.V. * * This ...
随机推荐
- Docker 删除容器
可以使用 docker rm 来删除一个处于终止状态的容器. 例如 $sudo docker rm trusting_newton trusting_newton 如果要删除一个运行中的容器,可以添加 ...
- vue 2.0 scopedSlots和slots在render函数中的应用示例
渲染内容为: hello from functional render scopedSlots render scopedSlots named slot of render hello from f ...
- OWASP Top 10十大风险 – 10个最重大的Web应用风险与攻防
先来看几个出现安全问题的例子 OWASP TOP10 开发为什么要知道OWASP TOP10 TOP1-注入 TOP1-注入的示例 TOP1-注入的防范 TOP1-使用ESAPI(https://gi ...
- APP自动化框架LazyAndroid使用手册(2)--元素自动抓取
作者:黄书力 概述 前面的一篇博文简要介绍了安卓自动化测试框架LazyAndroid的组成结构和基本功能,本文将详细描述此框架中元素自动抓取工具lazy-uiautomaterviewer的使用方法. ...
- Spark编译及spark开发环境搭建
最近需要将生产环境的spark1.3版本升级到spark1.6(尽管spark2.0已经发布一段时间了,稳定可靠起见,还是选择了spark1.6),同时需要基于spark开发一些中间件,因此需要搭建一 ...
- Scala:集合类型Collection和迭代器
http://blog.csdn.net/pipisorry/article/details/52902549 Scala Collection Scala 集合分为可变的和不可变的集合. 可变集合可 ...
- 改进版getpass库
编程伊始 正式实施 改进版 源码 以数字显示 以自定义分隔符delimiter显示 如何使用 下载及安装 在您的代码中使用 源码下载 总结 用过Linux的都知道,尤其是进行使用包管理软件类似于apt ...
- Python 2.7的字典实现简化版(C语言)
这是一个能自动调整大小的哈希字典,外部接口实现了下列功能. 1.字典级别: 创建字典 dict_new 归零字典 dict_clear 2.键值级别: 查找 dict_search 强制查找 dict ...
- cassandra 监控方案评估
摘要 最开始做cassandra monitor 方案的选型时,主要是从cassandra 本身入手,后来发现cassandra运行在JVM上,所有的metrics都是通过JMX 暴露出来.所以又可以 ...
- iOS网络基础
转载请标明出处: http://blog.csdn.net/xmxkf/article/details/51376048 本文出自:[openXu的博客] 常用类 get请求 post请求 NSURL ...