蓝桥杯练习系统—基础练习 2n皇后问题
问题描述
给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,
使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、
同一列或同一条对角线上。问总共有多少种放法?n小于等于8。
输入格式
输入的第一行为一个整数n,表示棋盘的大小。
接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,
表示对应的位置不可以放皇后。
输出格式
输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
样例输入
4
1 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
0
分析:回溯法
代码
#include<iostream>
#include<cstdio>
using namespace std;
const int MAX_N = ;
int n;
int ans = ;
int c = ;
int a[MAX_N][MAX_N];
int res1[][MAX_N*];//记录列,左对角线,右对角线是否有相同的皇后
int res2[][MAX_N*];//记录列,左对角线,右对角线是否有相同的皇后
void solve2(int cur) {
if(cur == n) { c++; return; }
for(int j = ; j < n; j++) {
if(a[cur][j] && !res2[][j] && !res2[][cur+j] && !res2[][n+cur-j]) {
res2[][j] = ; res2[][cur+j] = ; res2[][n+cur-j] = ;
solve2(cur+);
res2[][j] = ; res2[][cur+j] = ; res2[][n+cur-j] = ;
}
}
return;
}
void solve1(int cur) {
if(cur == n) {
c = ;
solve2();
ans += c;
return;
}
for(int j = ; j < n; j++) {
if(a[cur][j] && !res1[][j] && !res1[][cur+j] && !res1[][n+cur-j]) {
a[cur][j] = ;
res1[][j] = ; res1[][cur+j] = ; res1[][n+cur-j] = ;
solve1(cur+);
a[cur][j] = ;
res1[][j] = ; res1[][cur+j] = ; res1[][n+cur-j] = ;
}
}
return;
}
int main() {
while(scanf("%d", &n) == ) {
ans = ;
for(int i = ; i < n; i++)
for(int j = ; j < n; j++)
scanf("%d", &a[i][j]);
solve1();
printf("%d\n", ans);
}
return ;
}
以下为蓝桥杯测试系统的五组测试数据
input 1
3
1 1 0
1 1 1
1 1 0
output1
0
input2
4
1 1 1 1
1 0 1 1
1 1 1 1
1 1 1 1
output2
2
input 3
5
1 1 1 1 1
1 0 1 1 1
1 1 1 1 1
1 0 1 1 1
1 1 1 1 1
output3
12
input4
6
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
output4
12
input5
7
1 1 1 1 1 1 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
output5
408
蓝桥杯练习系统—基础练习 2n皇后问题的更多相关文章
- 蓝桥杯练习系统—基础练习 sine之舞
题目:最近FJ为他的奶牛们开设了数学分析课,FJ知道若要学好这门课,必须有一个好的三角函数,所以他准备和奶牛们做一个"Sine之舞"的游戏,寓教于乐,提高奶牛们的计算能力. 不妨设 ...
- Java实现 蓝桥杯VIP 基础练习 2n皇后问题
基础练习 2n皇后问题 时间限制:1.0s 内存限制:512.0MB 问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一 ...
- [18/12/3]蓝桥杯 练习系统 入门级别 Fibonacci数列求模问题 题解思路
前言略. 看到这个题目本来应该很高兴的,因为什么,因为太TM的基础了啊! 可是当你用常规方法尝试提交OJ时你会发现..hhh...运行超时..(开心地摇起了呆毛 //Fibonacci数列递归一般问题 ...
- 蓝桥杯试题 基础练习 2n皇后问题以及n皇后问题
在学习2n皇后之前,我们应该认识一下n皇后问题: 在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上.你的任务是,对于 ...
- 基础练习 2n皇后问题
时间限制:1.0s 内存限制:512.0MB 提交此题 锦囊1 锦囊2 问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同 ...
- 蓝桥杯c语言基础题
问题描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1. 当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少. 输入格式 输入包含一个整数n ...
- 蓝桥杯练习系统— 算法训练 Beaver's Calculator
问题描述 从万能词典来的聪明的海狸已经使我们惊讶了一次.他开发了一种新的计算器,他将此命名为"Beaver's Calculator 1.0".它非常特别,并且被计划使用在各种各样 ...
- 蓝桥杯练习系统历届试题 剪格子 dfs
问题描述 如下图所示,3 x 3 的格子中填写了一些整数. +--*--+--+|10* 1|52|+--****--+|20|30* 1|*******--+| 1| 2| 3|+--+--+--+ ...
- 蓝桥杯练习系统历届试题 带分数 dfs
问题描述 100 可以表示为带分数的形式:100 = 3 + 69258 / 714. 还可以表示为:100 = 82 + 3546 / 197. 注意特征:带分数中,数字1~9分别出现且只出现一次( ...
随机推荐
- SSH Secure Shell Client最新版,解决Win10不兼容问题
SSH的工具很多,像XShell,SecureCRT等等. 不过我一直用的是:SSH Secure Shell Client 主要的原因就是: 软件本身带文件浏览的功能,可以通过拖拽去实现文件上传和下 ...
- Java与算法之(2) - 快速排序
快速排序的基本思路是,每次选定数列中的一个基准数,将小于基准数的数字都放到基准数左边,大于基准数的数字都放到基准数右边.然后再分别对基准数左右的两个数列分别重复以上过程.仍以4 3 6 2 7 1 5 ...
- JavaScript判断对象是否含有某个属性
两种方式,但稍有区别 1,in 运算符 1 2 3 var obj = {name:'jack'}; alert('name' in obj); // --> true alert('toStr ...
- CF 615D Multipliers
题目:http://codeforces.com/contest/615/problem/D 求n的约数乘积. 设d(x)为x的约数个数,x=p1^a1+p2^a2+……+pn^an,f(x)为x的约 ...
- hdu_1028_母函数
虽然我很想自己写母函数讲解...但是最近事情太多了,就贴个很入门的讲解吧给出一个经典的模板A了这个题 http://blog.csdn.net/vsooda/article/details/79754 ...
- javascript数据类型之Array类型
Array类型 除了Object之外,Array类型恐怕是ECMAScript中最常用的类型了.而且,ECMAScript中的数组与其他多数语言中的数组有着相当大的区别.虽然ECMAScript数组与 ...
- 十二个 ASP.NET Core 例子——配置操作
目录: 简单配置(利用configration 键值读取) 使用选项和配置对象(自定义类绑定配置文件实现读取) IOptionsSnapshot(配置文件更改时也变化) 内存数据放到配置对象中 实体框 ...
- jquery 图片自动无缝滚动
<!DOCTYPE html><html><head> <meta charset="utf-8"> <meta http-e ...
- cuda纹理内存的使用
CUDA纹理内存的访问速度比全局内存要快,因此处理图像数据时,使用纹理内存是一个提升性能的好方法. 贴一段自己写的简单的实现两幅图像加权和的代码,使用纹理内存实现. 输入:两幅图 lena, moon ...
- CUDA与OpenGL互操作
当处理较大数据量的时候,往往会用GPU进行运算,比如OpenGL或者CUDA.在实际的操作中,往往CUDA实现并行计算会比OpenGL更加方便,而OpenGL在进行后期渲染更具有优势.由于CUDA中的 ...