洛谷 P1069 解题报告
P1069 细胞分裂
题目描述
\(Hanks\)博士是\(BT\) (\(Bio-Tech\),生物技术) 领域的知名专家。现在,他正在为一个细胞实验做准备工作:培养细胞样本。
\(Hanks\) 博士手里现在有\(N\)种细胞编号从\(1\)~\(N\),一个第\(i\)种细胞经过\(1\)秒钟可以分裂为\(S_i\)个同种细胞(\(S_i\)为正整数)。现在他需要选取某种细胞的一个放进培养皿,让其自由分裂,进行培养。一段时间以后,再把培养皿中的所有细胞平均分入\(M\)个试管,形成\(M\)份样本,用于实验。\(Hanks\)博士的试管数\(M\)很大,普通的计算机的基本数据类型无法存储这样大的\(M\)值,但万幸的是,\(M\)总可以表示为\(m1\)的\(m2\)次方,即\(M = m_1^{m_2}\),其中\(m_1\),\(m_2\)均为基本数据类型可以存储的正整数。
注意,整个实验过程中不允许分割单个细胞,比如某个时刻若培养皿中有\(4\)个细胞,
\(Hanks\)博士可以把它们分入\(2\)个试管,每试管内\(2\)个,然后开始实验。但如果培养皿中有\(5\)个细胞,博士就无法将它们均分入\(2\)个试管。此时,博士就只能等待一段时间,让细胞们继续分裂,使得其个数可以均分,或是干脆改换另一种细胞培养。
为了能让实验尽早开始,\(Hanks\)博士在选定一种细胞开始培养后,总是在得到的细胞“刚好可以平均分入\(M\)个试管”时停止细胞培养并开始实验。现在博士希望知道,选择哪种细胞培养,可以使得实验的开始时间最早。
输入输出格式
输入格式:
第一行有一个正整数\(N\),代表细胞种数。
第二行有两个正整数\(m1,m2\)以一个空格隔开,即表示试管的总数\(M = m_1^{m_2}\)
第三行有\(N\)个正整数,第\(i\)个数\(S_i\)表示第\(i\)种细胞经过\(1\)秒钟可以分裂成同种细胞的个数。
输出格式:
输出文件 cell.out 共一行,为一个整数,表示从开始培养细胞到实验能够开始所经过的最少时间(单位为秒)。
如果无论 Hanks 博士选择哪种细胞都不能满足要求,则输出整数-1。
本蒟蒻十分不擅长做数学题,于是决定认真对待每一道数学题。
来分析一波,我们需要满足这个式子
- \(m_1^{m_2}|S_i^{q}\)
我们要找到最小的整数\(q\)值
当然,我们不可能把这个乘开看看能否整除,而应该分解质因数比较。
将\(m_1\)分解,对她的质因数\(q_i\)乘以\(m_2\),在看看要多少个\(S_i\)凑到一起去才能搞到比\(q_i*m_2\)还多的质因子\(q_i\),于是对于每个\(S_i\),我们都可以求的她的最小要求数。
取最小的即可。
code:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N=30010;
const int inf=0x3f3f3f3f;
int n,m1,m2,cnt=0;
int a[N];//分解m1后质因子的个数
int pre[N],is_pre[N];
void seperate()
{
memset(a,0,sizeof(a));
int i=1,mm=m1;
while(mm&&i<=cnt)
{
while(mm&&mm%pre[i]==0)
{
mm/=pre[i];
a[pre[i]]++;
}
i++;
}
for(int i=1;i<=m1;i++)
a[i]*=m2;
}
int main()
{
memset(is_pre,1,sizeof(is_pre));
cin>>n>>m1>>m2;
for(int i=2;i<=m1;i++)
{
if(is_pre[i])
pre[++cnt]=i;
for(int j=1;pre[j]*i<=m1&&j<=cnt;j++)
{
is_pre[pre[j]*i]=false;
if(i%pre[j]==0) break;
}
}
seperate();
int s,m_min=inf,m_max=0;
for(int i=1;i<=n;i++)
{
int flag=0;
m_max=0;
scanf("%d",&s);
for(int j=2;j<=m1;j++)
if(a[j])
{
if(s%j!=0)
{
flag=1;
break;
}
int cnt=0;
while(s%j==0)
{
cnt++;
s/=j;
}
if(a[j]%cnt==0)
m_max=max(m_max,a[j]/cnt);
else
m_max=max(m_max,a[j]/cnt+1);
}
if(m_max&&!flag&&m_min>m_max)
m_min=m_max;
}
if(m1==1&&n!=0)
{
printf("0\n");
return 0;
}
if(m_min==inf)
cout<<"-1"<<endl;
else
cout<<m_min<<endl;
return 0;
}
2018.4.25
洛谷 P1069 解题报告的更多相关文章
- 洛谷 P1462 解题报告
P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...
- 洛谷 P1879 解题报告
P1879 [USACO06NOV]玉米田Corn Fields 题目描述 农场主\(John\)新买了一块长方形的新牧场,这块牧场被划分成\(M\)行\(N\)列\((1 ≤ M ≤ 12; 1 ≤ ...
- 洛谷 P2491 解题报告
P2491 消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个 ...
- 洛谷 P2587 解题报告
P2587 [ZJOI2008]泡泡堂 题目描述 第XXXX届NOI期间,为了加强各省选手之间的交流,组委会决定组织一场省际电子竞技大赛,每一个省的代表队由n名选手组成,比赛的项目是老少咸宜的网络游戏 ...
- 洛谷 P1054 解题报告
P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的 ...
- 洛谷 P1053 解题报告
P1053 篝火晚会 题目描述 佳佳刚进高中,在军训的时候,由于佳佳吃苦耐劳,很快得到了教官的赏识,成为了"小教官".在军训结束的那天晚上,佳佳被命令组织同学们进行篝火晚会.一共有 ...
- 洛谷 P1057 解题报告
P1057 传球游戏 题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹 ...
- 洛谷 P1430 解题报告
P1430 序列取数 题目描述 给定一个长为\(n\)的整数序列\((n<=1000)\),由\(A\)和\(B\)轮流取数(\(A\)先取).每个人可从序列的左端或右端取若干个数(至少一个), ...
- 洛谷 P1613 解题报告
P1613 跑路 题目描述 小\(A\)的工作不仅繁琐,更有苛刻的规定,要求小\(A\)每天早上在\(6:00\)之前到达公司,否则这个月工资清零.可是小\(A\)偏偏又有赖床的坏毛病.于是为了保住自 ...
随机推荐
- 在mysql数据库中创建oracle scott用户的四个表及插入初始化数据
在mysql数据库中创建oracle scott用户的四个表及插入初始化数据 /* 功能:创建 scott 数据库中的 dept 表 */ create table dept( deptno int ...
- 9.2、Libgdx的输入处理之鼠标、触摸和键盘
(官网:www.libgdx.cn) Libgdx支持的最主要的设备是desktop或浏览器的鼠标支持,Android的触摸屏支持和键盘的支持.我们接下来了解一下. 键盘 用户按下或释放一个按键生成了 ...
- 异常驱动的开发(Exception-Driven Development)
你的网站或应用程序存在哪些问题?如果你在等着用户来告诉你,那么你只能看到所有的问题中已经暴露的那极小的一部分.要知道,那只是"冰山一角"! 而且,如果你真的是在守株待兔,我不得不很 ...
- CentOS安装、使用VNC
VNC (Virtual Network Computer)是虚拟网络计算机的缩写.VNC 是一款优秀的远程控制工具软件,由著名的 AT&T 的欧洲研究实验室开发的.VNC 是在基于 UNIX ...
- 主流列式数据库评测:InfiniDB
).本文测试的InfiniDB版本是2010年12月20日发布的2.02版,下载文件名分别为InfiniDB64-2.0.2-2.exe 和InfiniDB64-ent-2.0.2-2.exe.安装文 ...
- Android进阶(二十一)创建Android虚拟机
创建Android虚拟机
- C语言生成32位和64位随机数算法
C语言生成32位和64位随机数算法 /** * randstd.h * * Standard definitions and types, Bob Jenkins * * 2015-01-19: re ...
- IP的种类与获取方式
IP 的种类与取得方式 接下来要跟大家谈一谈也是很容易造成大家困扰的一个部分,那就是 IP 的种类!很多朋友常常听到什么『真实IP, 实体 IP, 虚拟 IP, 假的 IP....』烦都烦死了-其实不 ...
- HBase中缓存的优先级
ava代码 // Instantiate priority buckets BlockBucket bucketSingle = new BlockBucket(bytesToFree, bloc ...
- 初探linux子系统集之led子系统(一)
就像学编程第一个范例helloworld一样,学嵌入式,单片机.fpga之类的第一个范例就是点亮一盏灯.对于庞大的linux系统,当然可以编写一个字符设备驱动来实现我们需要的led灯,也可以直接利用g ...