洛谷 P1069 解题报告
P1069 细胞分裂
题目描述
\(Hanks\)博士是\(BT\) (\(Bio-Tech\),生物技术) 领域的知名专家。现在,他正在为一个细胞实验做准备工作:培养细胞样本。
\(Hanks\) 博士手里现在有\(N\)种细胞编号从\(1\)~\(N\),一个第\(i\)种细胞经过\(1\)秒钟可以分裂为\(S_i\)个同种细胞(\(S_i\)为正整数)。现在他需要选取某种细胞的一个放进培养皿,让其自由分裂,进行培养。一段时间以后,再把培养皿中的所有细胞平均分入\(M\)个试管,形成\(M\)份样本,用于实验。\(Hanks\)博士的试管数\(M\)很大,普通的计算机的基本数据类型无法存储这样大的\(M\)值,但万幸的是,\(M\)总可以表示为\(m1\)的\(m2\)次方,即\(M = m_1^{m_2}\),其中\(m_1\),\(m_2\)均为基本数据类型可以存储的正整数。
注意,整个实验过程中不允许分割单个细胞,比如某个时刻若培养皿中有\(4\)个细胞,
\(Hanks\)博士可以把它们分入\(2\)个试管,每试管内\(2\)个,然后开始实验。但如果培养皿中有\(5\)个细胞,博士就无法将它们均分入\(2\)个试管。此时,博士就只能等待一段时间,让细胞们继续分裂,使得其个数可以均分,或是干脆改换另一种细胞培养。
为了能让实验尽早开始,\(Hanks\)博士在选定一种细胞开始培养后,总是在得到的细胞“刚好可以平均分入\(M\)个试管”时停止细胞培养并开始实验。现在博士希望知道,选择哪种细胞培养,可以使得实验的开始时间最早。
输入输出格式
输入格式:
第一行有一个正整数\(N\),代表细胞种数。
第二行有两个正整数\(m1,m2\)以一个空格隔开,即表示试管的总数\(M = m_1^{m_2}\)
第三行有\(N\)个正整数,第\(i\)个数\(S_i\)表示第\(i\)种细胞经过\(1\)秒钟可以分裂成同种细胞的个数。
输出格式:
输出文件 cell.out 共一行,为一个整数,表示从开始培养细胞到实验能够开始所经过的最少时间(单位为秒)。
如果无论 Hanks 博士选择哪种细胞都不能满足要求,则输出整数-1。
本蒟蒻十分不擅长做数学题,于是决定认真对待每一道数学题。
来分析一波,我们需要满足这个式子
- \(m_1^{m_2}|S_i^{q}\)
我们要找到最小的整数\(q\)值
当然,我们不可能把这个乘开看看能否整除,而应该分解质因数比较。
将\(m_1\)分解,对她的质因数\(q_i\)乘以\(m_2\),在看看要多少个\(S_i\)凑到一起去才能搞到比\(q_i*m_2\)还多的质因子\(q_i\),于是对于每个\(S_i\),我们都可以求的她的最小要求数。
取最小的即可。
code:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N=30010;
const int inf=0x3f3f3f3f;
int n,m1,m2,cnt=0;
int a[N];//分解m1后质因子的个数
int pre[N],is_pre[N];
void seperate()
{
memset(a,0,sizeof(a));
int i=1,mm=m1;
while(mm&&i<=cnt)
{
while(mm&&mm%pre[i]==0)
{
mm/=pre[i];
a[pre[i]]++;
}
i++;
}
for(int i=1;i<=m1;i++)
a[i]*=m2;
}
int main()
{
memset(is_pre,1,sizeof(is_pre));
cin>>n>>m1>>m2;
for(int i=2;i<=m1;i++)
{
if(is_pre[i])
pre[++cnt]=i;
for(int j=1;pre[j]*i<=m1&&j<=cnt;j++)
{
is_pre[pre[j]*i]=false;
if(i%pre[j]==0) break;
}
}
seperate();
int s,m_min=inf,m_max=0;
for(int i=1;i<=n;i++)
{
int flag=0;
m_max=0;
scanf("%d",&s);
for(int j=2;j<=m1;j++)
if(a[j])
{
if(s%j!=0)
{
flag=1;
break;
}
int cnt=0;
while(s%j==0)
{
cnt++;
s/=j;
}
if(a[j]%cnt==0)
m_max=max(m_max,a[j]/cnt);
else
m_max=max(m_max,a[j]/cnt+1);
}
if(m_max&&!flag&&m_min>m_max)
m_min=m_max;
}
if(m1==1&&n!=0)
{
printf("0\n");
return 0;
}
if(m_min==inf)
cout<<"-1"<<endl;
else
cout<<m_min<<endl;
return 0;
}
2018.4.25
洛谷 P1069 解题报告的更多相关文章
- 洛谷 P1462 解题报告
P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...
- 洛谷 P1879 解题报告
P1879 [USACO06NOV]玉米田Corn Fields 题目描述 农场主\(John\)新买了一块长方形的新牧场,这块牧场被划分成\(M\)行\(N\)列\((1 ≤ M ≤ 12; 1 ≤ ...
- 洛谷 P2491 解题报告
P2491 消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个 ...
- 洛谷 P2587 解题报告
P2587 [ZJOI2008]泡泡堂 题目描述 第XXXX届NOI期间,为了加强各省选手之间的交流,组委会决定组织一场省际电子竞技大赛,每一个省的代表队由n名选手组成,比赛的项目是老少咸宜的网络游戏 ...
- 洛谷 P1054 解题报告
P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的 ...
- 洛谷 P1053 解题报告
P1053 篝火晚会 题目描述 佳佳刚进高中,在军训的时候,由于佳佳吃苦耐劳,很快得到了教官的赏识,成为了"小教官".在军训结束的那天晚上,佳佳被命令组织同学们进行篝火晚会.一共有 ...
- 洛谷 P1057 解题报告
P1057 传球游戏 题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹 ...
- 洛谷 P1430 解题报告
P1430 序列取数 题目描述 给定一个长为\(n\)的整数序列\((n<=1000)\),由\(A\)和\(B\)轮流取数(\(A\)先取).每个人可从序列的左端或右端取若干个数(至少一个), ...
- 洛谷 P1613 解题报告
P1613 跑路 题目描述 小\(A\)的工作不仅繁琐,更有苛刻的规定,要求小\(A\)每天早上在\(6:00\)之前到达公司,否则这个月工资清零.可是小\(A\)偏偏又有赖床的坏毛病.于是为了保住自 ...
随机推荐
- Hive操作语句实例讲解(帮助你了解 桶 bucket)
http://blog.sina.com.cn/s/blog_66474b16010182yu.html这篇可以较好地理解什么是外部表external #创建表人信息表 person(String ...
- 【Unity Shaders】Diffuse Shading——向Surface Shader添加properties
本系列主要参考<Unity Shaders and Effects Cookbook>一书(感谢原书作者),同时会加上一点个人理解或拓展. 这里是本书所有的插图.这里是本书所需的代码和资源 ...
- (二)plist的使用和序列帧动画
六.plist的使用方法: iOS的程序在安装在手机上以后会把全部资源文件集成在一个文件夹中,这种文件集合称为bundle,对于一般的工程,只有一个bundle,即mainbundle,因此可以通过b ...
- 【云计算 Hadoop】Hadoop 版本 生态圈 MapReduce模型
忘的差不多了, 先补概念, 然后开始搭建集群实战 ... . 一 Hadoop版本 和 生态圈 1. Hadoop版本 (1) Apache Hadoop版本介绍 Apache的开源项目开发流程 : ...
- iOSAPP启动效果复杂动画之抽丝剥茧
一.前言 随着开发者的增多和时间的累积,AppStore已经有非常多的应用了,每年都有很多新的APP产生.但是我们手机上留存的应用有限,所以如何吸引用户,成为产品设计的一项重要内容.其中炫酷的动画效果 ...
- windows linux—unix 跨平台通信集成控制系统----系统硬件信息获取
控制集成系统需要了解系统的各项硬件信息,之前我们设计的时候,习惯使用c函数来搞,后来可能发现程序的移植性收到了一些影响,比如unix内核的一些c函数在linux下面是没有的: 比如 苹果达尔文内核的如 ...
- 使用Material Design Tint和视图详解
视图 首先来讲Material Design 视图的概念,在新的api中,新添加了z轴的概念,z轴垂直于屏幕,用来表现元素的层叠关系,z值(海拔高度)越高,元素离界面底层(水平面)越远,投影越重,这里 ...
- 使用钩子参与到TCP拥塞事件的处理中
TCP定义了几个拥塞事件,当这些事件发生时,我们可以通过TCP的拥塞控制算法,调用自定义的处理函数, 来做一些额外的事情的.也就是说,我们可以很简便的参与到TCP对拥塞事件的处理过程中. Author ...
- thrift实现HDFS文件操作
thrift 文件如下 namespace java com.pera.file.transform struct File{ 1:string path , 2:string co ...
- redis持久化AOF与RDB
RDB 持久化可以在指定的时间间隔内生成数据集的时间点快照(point-in-time snapshot). AOF 持久化记录服务器执行的所有写操作命令,并在服务器启动时,通过重新执行这些命令来还原 ...