P1069 细胞分裂

题目描述

\(Hanks\)博士是\(BT\) (\(Bio-Tech\),生物技术) 领域的知名专家。现在,他正在为一个细胞实验做准备工作:培养细胞样本。

\(Hanks\) 博士手里现在有\(N\)种细胞编号从\(1\)~\(N\),一个第\(i\)种细胞经过\(1\)秒钟可以分裂为\(S_i\)个同种细胞(\(S_i\)为正整数)。现在他需要选取某种细胞的一个放进培养皿,让其自由分裂,进行培养。一段时间以后,再把培养皿中的所有细胞平均分入\(M\)个试管,形成\(M\)份样本,用于实验。\(Hanks\)博士的试管数\(M\)很大,普通的计算机的基本数据类型无法存储这样大的\(M\)值,但万幸的是,\(M\)总可以表示为\(m1\)的\(m2\)次方,即\(M = m_1^{m_2}\),其中\(m_1\),\(m_2\)均为基本数据类型可以存储的正整数。

注意,整个实验过程中不允许分割单个细胞,比如某个时刻若培养皿中有\(4\)个细胞,

\(Hanks\)博士可以把它们分入\(2\)个试管,每试管内\(2\)个,然后开始实验。但如果培养皿中有\(5\)个细胞,博士就无法将它们均分入\(2\)个试管。此时,博士就只能等待一段时间,让细胞们继续分裂,使得其个数可以均分,或是干脆改换另一种细胞培养。

为了能让实验尽早开始,\(Hanks\)博士在选定一种细胞开始培养后,总是在得到的细胞“刚好可以平均分入\(M\)个试管”时停止细胞培养并开始实验。现在博士希望知道,选择哪种细胞培养,可以使得实验的开始时间最早。

输入输出格式

输入格式:

第一行有一个正整数\(N\),代表细胞种数。

第二行有两个正整数\(m1,m2\)以一个空格隔开,即表示试管的总数\(M = m_1^{m_2}\)

第三行有\(N\)个正整数,第\(i\)个数\(S_i\)表示第\(i\)种细胞经过\(1\)秒钟可以分裂成同种细胞的个数。

输出格式:

输出文件 cell.out 共一行,为一个整数,表示从开始培养细胞到实验能够开始所经过的最少时间(单位为秒)。

如果无论 Hanks 博士选择哪种细胞都不能满足要求,则输出整数-1。


本蒟蒻十分不擅长做数学题,于是决定认真对待每一道数学题。

来分析一波,我们需要满足这个式子

  • \(m_1^{m_2}|S_i^{q}\)

我们要找到最小的整数\(q\)值

当然,我们不可能把这个乘开看看能否整除,而应该分解质因数比较。

将\(m_1\)分解,对她的质因数\(q_i\)乘以\(m_2\),在看看要多少个\(S_i\)凑到一起去才能搞到比\(q_i*m_2\)还多的质因子\(q_i\),于是对于每个\(S_i\),我们都可以求的她的最小要求数。

取最小的即可。


code:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N=30010;
const int inf=0x3f3f3f3f;
int n,m1,m2,cnt=0;
int a[N];//分解m1后质因子的个数
int pre[N],is_pre[N];

void seperate()
{
    memset(a,0,sizeof(a));
    int i=1,mm=m1;
    while(mm&&i<=cnt)
    {
        while(mm&&mm%pre[i]==0)
        {
            mm/=pre[i];
            a[pre[i]]++;
        }
        i++;
    }
    for(int i=1;i<=m1;i++)
        a[i]*=m2;
}

int main()
{
    memset(is_pre,1,sizeof(is_pre));
    cin>>n>>m1>>m2;
    for(int i=2;i<=m1;i++)
    {
        if(is_pre[i])
            pre[++cnt]=i;
        for(int j=1;pre[j]*i<=m1&&j<=cnt;j++)
        {
            is_pre[pre[j]*i]=false;
            if(i%pre[j]==0) break;
        }
    }
    seperate();
    int s,m_min=inf,m_max=0;
    for(int i=1;i<=n;i++)
    {
        int flag=0;
        m_max=0;
        scanf("%d",&s);
        for(int j=2;j<=m1;j++)
            if(a[j])
            {
                if(s%j!=0)
                {
                    flag=1;
                    break;
                }
                int cnt=0;
                while(s%j==0)
                {
                    cnt++;
                    s/=j;
                }
                if(a[j]%cnt==0)
                    m_max=max(m_max,a[j]/cnt);
                else
                    m_max=max(m_max,a[j]/cnt+1);
            }
        if(m_max&&!flag&&m_min>m_max)
            m_min=m_max;
    }
    if(m1==1&&n!=0)
    {
        printf("0\n");
        return 0;
    }
    if(m_min==inf)
        cout<<"-1"<<endl;
    else
        cout<<m_min<<endl;
    return 0;
}

2018.4.25

洛谷 P1069 解题报告的更多相关文章

  1. 洛谷 P1462 解题报告

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  2. 洛谷 P1879 解题报告

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 农场主\(John\)新买了一块长方形的新牧场,这块牧场被划分成\(M\)行\(N\)列\((1 ≤ M ≤ 12; 1 ≤ ...

  3. 洛谷 P2491 解题报告

    P2491 消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个 ...

  4. 洛谷 P2587 解题报告

    P2587 [ZJOI2008]泡泡堂 题目描述 第XXXX届NOI期间,为了加强各省选手之间的交流,组委会决定组织一场省际电子竞技大赛,每一个省的代表队由n名选手组成,比赛的项目是老少咸宜的网络游戏 ...

  5. 洛谷 P1054 解题报告

    P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的 ...

  6. 洛谷 P1053 解题报告

    P1053 篝火晚会 题目描述 佳佳刚进高中,在军训的时候,由于佳佳吃苦耐劳,很快得到了教官的赏识,成为了"小教官".在军训结束的那天晚上,佳佳被命令组织同学们进行篝火晚会.一共有 ...

  7. 洛谷 P1057 解题报告

    P1057 传球游戏 题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹 ...

  8. 洛谷 P1430 解题报告

    P1430 序列取数 题目描述 给定一个长为\(n\)的整数序列\((n<=1000)\),由\(A\)和\(B\)轮流取数(\(A\)先取).每个人可从序列的左端或右端取若干个数(至少一个), ...

  9. 洛谷 P1613 解题报告

    P1613 跑路 题目描述 小\(A\)的工作不仅繁琐,更有苛刻的规定,要求小\(A\)每天早上在\(6:00\)之前到达公司,否则这个月工资清零.可是小\(A\)偏偏又有赖床的坏毛病.于是为了保住自 ...

随机推荐

  1. MinerBean.java 数据库表 miner bean

    MinerBean.java 数据库表 miner bean package com.iteye.injavawetrust.miner; import java.util.Date; /** * 数 ...

  2. RB-tree (红黑树)相关问题

    今天被问到了红黑树的规则,简述总结一下: 1.每个节点不是红色就是黑色. 2.根节点为黑色. 3.如果节点为红,其子节点必须为黑. 4.任一节点至NULL(树尾端)的任何路径,所含之黑节点数必须相同. ...

  3. Android Studio JNI javah遇到的问题

    好久没写博客了.持之以恒的勋章也被收回了.以后要好好坚持.. 最近在学习jni,但是遇到了一点麻烦的问题.好在终于解决了,便记下来解决一下. 其他入门的jni文章有很多,这里便不在累赘,直接上我遇到的 ...

  4. PLSQL WEBSERVICES 发布

        一. 在Oracle EBS二次开发中,PL/SQL程序是开发人员使用频率最高的开发语言,同时也是大家最容易掌握的工具之一了,而我们也很希望将自己编写的PL/SQL程序发布为Web服务来提供给 ...

  5. jsp中的tag与tld

    转载自: http://www.cnblogs.com/fanzi2009/archive/2010/04/08/1707888.html 在jsp文件中,可以引用tag和tld文件.  1.对于ta ...

  6. 配置安装nginx

    1.解决依赖关系和优化所需的组件 编译安装nginx需要事先需要安装开发包组"Development Tools" .同时,安装pcre-devel包,用yum安装即可 安装TCM ...

  7. Android监听自身卸载,弹出用户反馈调查

    1,情景分析 在上上篇博客中我写了一下NDK开发实践项目,使用开源的LAME库转码MP3,作为前面几篇基础博客的加深理解使用的,但是这样的项目用处不大,除了练练NDK功底.这篇博客,我将讲述一下一个各 ...

  8. Hash函数

    简介 哈稀函数按照定义可以实现一个伪随机数生成器(PRNG),从这个角度可以得到一个公认的结论:哈希函数之间性能的比较可以通过比较其在伪随机生成方面的比较来衡量. 一些常用的分析技术,例如泊松分布可用 ...

  9. 坚持自己的追求,迎来 “中国系统开发网” (CSDN)的专访

    坚持自己的追求,迎来 "中国系统开发网" (CSDN)的专访: 专访马根峰:海量数据处理与分析大师的中国本土程序员" http://www.csdn.net/articl ...

  10. obj-c编程10:Foundation库中类的使用(1)[数字,字符串]

    我们知道在mac或iphone上编程最终逃不开os x平台,你无法在windows或linux上开发纯正的apple程序.(so不要舍不得银子买mac啦)虽说linux和windows上有移植的obj ...