CNN中的padding
在使用TF搭建CNN的过程中,卷积的操作如下
convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], padding="SAME")
这个函数中各个参数的含义是什么呢?
- X:输入数据的mini-batch,为一个4D tensor;分别表示的含义为[n_batch,height,width,channel]
- filters:为卷积核,为一个4D tensor,分别表示的含义为 [filter_height, filter_width, in_channels, out_channels]
- stride:为步长,使用方法为[1,stride,stride,1]
该方法先将filter展开为一个2D的矩阵,形状为[filter_heightfilter_width in_channels, out_channels],再在图片上面选择一块大小进行卷积计算的到一个大小为[batch, out_height, out_width, filter_height * filter_width * in_channels]的虚拟张量。
再将上面两部相乘(右乘filter矩阵) - padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式。下面使用图表示两种的计算形式
当使用VALID
的时候,如果卷积计算过程中,剩下的不够一步,则剩下的像素会被抛弃,SAME
则会补0.
filter_primes = np.array([2., 3., 5., 7., 11., 13.], dtype=np.float32)
x = tf.constant(np.arange(1, 13+1, dtype=np.float32).reshape([1, 1, 13, 1]))
filters = tf.constant(filter_primes.reshape(1, 6, 1, 1))
valid_conv = tf.nn.conv2d(x, filters, strides=[1, 1, 5, 1], padding='VALID')
same_conv = tf.nn.conv2d(x, filters, strides=[1, 1, 5, 1], padding='SAME')
with tf.Session() as sess:
print("VALID:\n", valid_conv.eval())
print("SAME:\n", same_conv.eval())
输出内容为
VALID:
[[[[ 184.]
[ 389.]]]]
SAME:
[[[[ 143.]
[ 348.]
[ 204.]]]]
实际计算向量如下所示:
print("VALID:")
print(np.array([1,2,3,4,5,6]).T.dot(filter_primes))
print(np.array([6,7,8,9,10,11]).T.dot(filter_primes))
print("SAME:")
print(np.array([0,1,2,3,4,5]).T.dot(filter_primes))
print(np.array([5,6,7,8,9,10]).T.dot(filter_primes))
print(np.array([10,11,12,13,0,0]).T.dot(filter_primes))
>>
VALID:
184.0
389.0
SAME:
143.0
348.0
204.0
再来做一个小实验,使用VALID
的时候:
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1]))
op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='VALID')
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(op)
# print(sess.run(op))
>>Tensor("Conv2D:0", shape=(1, 2, 2, 1), dtype=float32)
使用SAME
的时候
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1]))
op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(op)
# print(sess.run(op))
>>Tensor("Conv2D:0", shape=(1, 3, 3, 1), dtype=float32)
CNN中的padding的更多相关文章
- 【TensorFlow】一文弄懂CNN中的padding参数
在深度学习的图像识别领域中,我们经常使用卷积神经网络CNN来对图像进行特征提取,当我们使用TensorFlow搭建自己的CNN时,一般会使用TensorFlow中的卷积函数和池化函数来对图像进行卷积和 ...
- 基于TensorFlow理解CNN中的padding参数
1 TensorFlow中用到padding的地方 在TensorFlow中用到padding的地方主要有tf.nn.conv2d(),tf.nn.max_pool(),tf.nn.avg_pool( ...
- CNN中的卷积核及TensorFlow中卷积的各种实现
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN ...
- CNN中减少网络的参数的三个思想
CNN中减少网络的参数的三个思想: 1) 局部连接(Local Connectivity) 2) 权值共享(Shared Weights) 3) 池化(Pooling) 局部连接 局部连接是相对于全连 ...
- 从 python 中 axis 参数直觉解释 到 CNN 中 BatchNorm 的工作方式(Keras代码示意)
1. python 中 axis 参数直觉解释 网络上的解释很多,有的还带图带箭头.但在高维下是画不出什么箭头的.这里阐述了 axis 参数最简洁的解释. 假设我们有矩阵a, 它的shape是(4, ...
- 由浅入深:CNN中卷积层与转置卷积层的关系
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷 ...
- (原)CNN中的卷积、1x1卷积及在pytorch中的验证
转载请注明处处: http://www.cnblogs.com/darkknightzh/p/9017854.html 参考网址: https://pytorch.org/docs/stable/nn ...
- CNN中feature map、卷积核、卷积核的个数、filter、channel的概念解释
CNN中feature map.卷积核.卷积核的个数.filter.channel的概念解释 参考链接: https://blog.csdn.net/xys430381_1/article/detai ...
- 如果将彩色图像和灰度图像一起放进 CNN 中去,会是什么结果?
如果将彩色图像和灰度图像一起放进 CNN 中去,会是什么结果? 今天,坑爹的实验,我处理 SUN397 的时候,忘记去掉灰度图了,结果,利用微调后的 model 提取 feature,悲剧的发现,无论 ...
随机推荐
- [清华集训]小 Y 和恐怖的奴隶主
题面在这里 题意 有一个\(Boss\)和他血量为\(m\)的随从奴隶主,每当奴隶主受到攻击且不死,并且\(Boss\)的随从个数\(<k\)时,就会新召唤一个血量为\(m\)的奴隶主.每次攻击 ...
- [BZOJ1070] [SCOI2007] 修车 (费用流 & 动态加边)
Description 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序,使 ...
- iOS学习——UIPickerView的实现年月选择器
最近项目上需要用到一个选择器,选择器中的内容只有年和月,而在iOS系统自带的日期选择器UIDatePicker中却只有四个选项如下,分别是时间(时分秒).日期(年月日).日期+时间(年月日时分)以及倒 ...
- sharepoint 2013实践
之前在一篇文章中说过了SharePoint环境的安装.那么如何使用SharePoint开发一个站点呢?这就是本篇所要阐述的问题. 在如何具体操作之前,我们先来普及下SharePoint基础知识.Far ...
- 如何为Web应用选择托管主机
PHP应用开发好了?恭喜你!不过,现在还没什么用,因为用户无法使用.你要把应用存储到服务器中,让预期受众能访问.一般来说,存储PHP应用有四种方式:共享服务器.虚拟私有服务器.专用服务器和平台即服务. ...
- NancyFX 第十二章 通道截拦
所有的好的Web框架都有一套好的通道截拦的机制,Nancy在我看来是处理最好的.那什么是请求通道那?下面的图可能说的比较清楚些: 正如名称中描述的,一个典型的Web请求在到达最终响应前会穿过一定数量的 ...
- java web(转)
装载:http://www.oschina.net/question/12_52027 OSCHINA 软件库有一个分类——Web框架,该分类中包含多种编程语言的将近500个项目. Web框架是开发者 ...
- devstack部署openstack环境
背景:公司需要搭建openstack私有云.配置两台物理服务器. 各大搜索引擎了解了下OpenStack.决定先在虚拟机上部署实现openstack. 前提准备 设备:一台宿主机Windows10 1 ...
- 特殊权限chattr的用法
1,只能对文件进行追加操作: [root@localhost tmp]# cat yum.log 22222222222222[root@localhost tmp]# chattr +a yum.l ...
- 从JavaScript的事件循环到Promise
JS线程是单线程运行机制,就是自己按顺序做自己的事,浏览器线程用于交互和控制,JS可以操作DOM元素, 说起JS中的异步时,我们需要注意的是,JS中其实有两种异步,一种是基于浏览器的异步IO,比如Aj ...