题解

在一个字符串中,每个字符出现的次数本身是无关紧要的,重要的只是这些次数的奇偶性,因此想到用一个二进制的位表示一个字母($1$表示出现奇数次,$0$表示出现偶数次)。比如样例的$6$个数,写成二进制后如图所示。

此时,问题转化为求尽量多的数,使得它们的$xor$值为$0$。

最容易想到的方法是直接穷举,时间复杂度为$O(2^n)$,有些偏大。注意到$xor$值为$0$的两个整数必须完全相等,我们可以把字符串分成两个部分:首先计算前$n \over 2$个字符串所能得到的所有$xor$值,并将其保存到一个映射$S$($xor$值->前$n \over 2$个字符串的一个子集)中;然后枚举后$n \over 2$个字符串所能得到的所有$xor$值,并每次都在$S$中查找。

如果映射用$STL$的$map$实现,总时间复杂度为$O(2^{n \over 2}log_2 n)$,即$O(1.44^n log_2 n)$,比第一种方法好了很多。

 //It is made by Awson on 2017.9.20
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <string>
#include <cstdio>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define lowbit(x) ((x)&(-(x)))
#define LL long long
using namespace std; int n;
char ch[];
int a[];
map<int, int> mp; int bitcount(int x) {
int cnt = ;
for (; x; x -= lowbit(x)) cnt++;
return cnt;
} void work() {
for (int i = ; i < n; i++) {
scanf("%s", ch);
a[i] = ;
for (int j = ; j < strlen(ch); j++) a[i] ^= <<ch[j]-'A';
}
mp.clear();
int mid = n/;
int lim = <<mid;
for (int i = ; i < lim; i++) {
int tmp = ;
for (int j = ; j < mid; j++)
if (i&(<<j)) tmp ^= a[j];
if (!mp.count(tmp) || bitcount(mp[tmp]) < bitcount(i))
mp[tmp] = i;
}
int ans = ;
lim = <<(n-mid);
for (int i = ; i < lim; i++) {
int tmp = ;
for (int j = mid; j < n; j++)
if (i&(<<j-mid)) tmp ^= a[j];
if (mp.count(tmp) && bitcount(ans) < bitcount(mp[tmp])+bitcount(i)) ans = (i<<mid)|mp[tmp];
}
printf("%d\n", bitcount(ans));
for (int i = ; i < n; i++)
if (ans&(<<i)) printf("%d ", i+);
putchar('\n');
}
int main() {
while (~scanf("%d", &n))
work();
return ;
}

[UVa 1326]Jurassic Remains的更多相关文章

  1. POJ 1903 & ZOJ 2469 & UVA 1326 Jurassic Remains (部分枚举)

    题意:给定n个只有大写字母组成的字符串,选取尽可能多的字符串,使得这些字符串中每个字母的个数都是偶数.n<=24 思路:直接枚举每个字符串的选或不选,复杂度是O(2^n).其实还有更简便的方法. ...

  2. UVa 1326 - Jurassic Remains(枚举子集+中途相遇法)

    训练指南p.59 #include <cstdio> #include <cstring> #include <cstdlib> #include <map& ...

  3. UVALive - 2965 Jurassic Remains (LA)

    Jurassic Remains Time Limit: 18000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu [Sub ...

  4. LA 2965 Jurassic Remains (中途相遇法)

    Jurassic Remains Paleontologists in Siberia have recently found a number of fragments of Jurassic pe ...

  5. 【中途相遇+二进制】【NEERC 2003】Jurassic Remains

    例题25  侏罗纪(Jurassic Remains, NEERC 2003, LA 2965) 给定n个大写字母组成的字符串.选择尽量多的串,使得每个大写字母都能出现偶数次. [输入格式] 输入包含 ...

  6. LA2965 Jurassic Remains

    Jurassic Remains https://vjudge.net/problem/UVALive-2965 Paleontologists in Siberia have recently fo ...

  7. UVa LA 2965 - Jurassic Remains 中间相遇,状态简化 难度: 2

    题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

  8. 【数论】UVa 10586 - Polynomial Remains

    Problem F: Polynomial Remains Given the polynomial a(x) = an xn + ... + a1 x + a0, compute the remai ...

  9. LA 2965 Jurassic Remains

    这是我做的第一道状态压缩的题目,而且我自己居然看懂了,理解得还算透彻. 题意:给出若干个大写字母组成的字符串,然后选取尽量多的字符串使得这些字母出现偶数次. 最朴素的想法,穷举法:每个字符串只有选和不 ...

随机推荐

  1. RPC原理解析

    1.RPC原理解析 1.1 什么是RPC RPC(Remote Procedure Call Protocol) --远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络 ...

  2. 软工实践项目需求分析(团队)修改版get√-黄紫仪

    日常前言:随笔距离文档大体完成已经过去了2天+(因为中间插了一波结对作业),所以目测感受没有那时候清晰(那时候烦的想打人了都--)需求分析那边去百度找了模板.emmmm好多东西感觉听都没听说过QAQ, ...

  3. fs检测文件夹状态

    var http = require("http"); var fs = require("fs"); var server = http.createServ ...

  4. 项目Beta冲刺Day4

    项目进展 李明皇 今天解决的进度 因服务器端未完成登录态维护,故无法进行前后端联动. 明天安排 前后端联动调试 林翔 今天解决的进度 因上课和实验室事务未完成登录态维护 明天安排 完成登录态维护 孙敏 ...

  5. Hibernate之深入持久化对象

    Hibernate是一个彻底的O/R Mapping 框架.之所以说彻底,是因为相对于其他的 框架 ,如Spring JDBC,iBatis 需要手动的管理SQL语句,Hibernate采用了完全 面 ...

  6. 在ArcGIS中导出现有mxd的style文件

     做好的地图包含许多地图符号,这是之前花了很多功夫做的,怎么把它导出来再用呢?     在ArcGIS中右键工具栏,customize,选择command选项卡,在搜索框中输入style ,选择too ...

  7. RAID 损坏后如何对物理硬盘做完整镜像

    "磁盘阵列是由很多价格较便宜的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能.利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上." ...

  8. ll的命令后面的字段详解

    linux学习 命令ll后字段的解释 分类:linux | 标签: 命令ll后字段的解释  2010-10-25 15:47阅读(4513)评论(0) ls -l 列表信息详解 我们平时用ls -l ...

  9. svn的使用技巧

    就是如果想一个文件在提交的时候不被上传,可以设置忽略这样提交的时候就不会被上传

  10. javascript单例模式及开发实践

    定义: 保证一个对象(类)仅有一个实例,并提供一个访问它的全局访问点: 实现原理: 利用闭包来保持对一个局部变量的引用,这个变量保存着首次创建的唯一的实例; 主要用于: 全局缓存.登录浮窗等只需要唯一 ...