[BJOI 2010]次小生成树Tree
Description
小 C 最近学了很多最小生成树的算法,Prim 算法、Kurskal 算法、消圈算法等等。 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了。小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说: 如果最小生成树选择的边集是 EM,严格次小生成树选择的边集是 ES,那么需要满足:(value(e) 表示边 e的权值)
这下小 C 蒙了,他找到了你,希望你帮他解决这个问题。
Input
第一行包含两个整数N 和M,表示无向图的点数与边数。 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z。
Output
包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)
Sample Input
1 2 1
1 3 2
2 4 3
3 5 4
3 4 3
4 5 6
Sample Output
Hint
数据中无向图无自环; 50% 的数据N≤2 000 M≤3 000; 80% 的数据N≤50 000 M≤100 000; 100% 的数据N≤100 000 M≤300 000 ,边权值非负且不超过 10^9 。
题解
次小生成树模板。简便地直接用$LCA$做。唯一注意的是由于它要求严格的次小生成树,所以我们$LCA$时还要记得保存次大值。(防止边权相等)
#include<map>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<string>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;
const LL N=; LL n,m,op,x,y,p,q,d=2e15;
struct aa
{
LL u,v,c;
}lin[N*+];
bool comp(aa a,aa b); LL mst,cnt;
struct bb
{
LL to,next,cost;
}edge[N*+];
LL path[N+],top;
bool vis[N*+];
void Add(LL u,LL v,LL c); LL set[N+];
LL Find(LL x); LL f[N+][],maxn[N+][],sub[N+][];
LL dep[N+];
void Dfs(LL x,LL depth);
void Lca(LL x,LL y,LL c); int main()
{
scanf("%lld%lld",&n,&m);
op=log2(n);
for (LL i=;i<=m;i++) scanf("%lld%lld%lld",&lin[i].u,&lin[i].v,&lin[i].c);
sort(lin+,lin+m+,comp);
for (LL i=;i<=m;i++)
{
p=Find(lin[i].u);
q=Find(lin[i].v);
if (p!=q)
{
set[p]=q;
cnt++;
mst+=lin[i].c;
vis[i]=;
Add(lin[i].u,lin[i].v,lin[i].c);
Add(lin[i].v,lin[i].u,lin[i].c);
if (cnt==n-) break;
}
}
if (cnt<n-)
{
printf("No MST!\n");
return ;
}
Dfs(,);
for (LL t=;t<=op;t++)
for (LL i=;i<=n;i++)
if (f[i][t-])
{
f[i][t]=f[f[i][t-]][t-];
x=maxn[i][t-];y=sub[i][t-];
p=maxn[f[i][t-]][t-];q=sub[f[i][t-]][t-];
if (x==p){maxn[i][t]=x;sub[i][t]=max(y,q);}
else if (x>p){maxn[i][t]=x;sub[i][t]=max(p,y);}
else if (x<p){maxn[i][t]=p;sub[i][t]=max(x,q);}
}
for (LL i=;i<=m;i++) if (!vis[i]) Lca(lin[i].u,lin[i].v,lin[i].c);
if (d==2e15) printf("No SST!");
else printf("%lld\n",mst+d);
return ;
} bool comp(aa a,aa b){return a.c<b.c;}
void Add(LL u,LL v,LL c)
{
edge[++top].to=v;
edge[top].next=path[u];
edge[top].cost=c;
path[u]=top;
}
LL Find(LL x){return set[x] ? set[x]=Find(set[x]):x;}
void Dfs(LL x,LL depth)
{
dep[x]=depth;
for (LL i=path[x];i;i=edge[i].next) if (!dep[edge[i].to])
{
f[edge[i].to][]=x;
maxn[edge[i].to][]=edge[i].cost;
Dfs(edge[i].to,depth+);
}
}
void Lca(LL x,LL y,LL c)
{
LL m1=,m2=;
if (dep[x]<dep[y]) swap(x,y);
for (LL i=op;i>=;i--) if (dep[x]-(<<i)>=dep[y])
{
if (sub[x][i]>m1){m2=m1;m1=sub[x][i];}
else if (sub[x][i]>m2&&sub[x][i]!=m1) m2=sub[x][i];
if (maxn[x][i]>m1){m2=m1;m1=maxn[x][i];}
else if (maxn[x][i]>m2&&maxn[x][i]!=m1) m2=maxn[x][i];
x=f[x][i];
}
if (x!=y)
{
for (LL i=op;i>=;i--) if (f[x][i]!=f[y][i])
{
if (sub[x][i]>m1){m2=m1;m1=sub[x][i];}
else if (sub[x][i]>m2&&sub[x][i]!=m1) m2=sub[x][i];
if (maxn[x][i]>m1){m2=m1;m1=maxn[x][i];}
else if (maxn[x][i]>m2&&maxn[x][i]!=m1) m2=maxn[x][i];
if (sub[y][i]>m1){m2=m1;m1=sub[y][i];}
else if (sub[y][i]>m2&&sub[y][i]!=m1) m2=sub[y][i];
if (maxn[y][i]>m1){m2=m1;m1=maxn[y][i];}
else if (maxn[y][i]>m2&&maxn[y][i]!=m1) m2=maxn[y][i];
x=f[x][i];
y=f[y][i];
}
if (sub[x][]>m1){m2=m1;m1=sub[x][];}
else if (sub[x][]>m2&&sub[x][]!=m1) m2=sub[x][];
if (maxn[x][]>m1){m2=m1;m1=maxn[x][];}
else if (maxn[x][]>m2&&maxn[x][]!=m1) m2=maxn[x][];
if (sub[y][]>m1){m2=m1;m1=sub[y][];}
else if (sub[y][]>m2&&sub[y][]!=m1) m2=sub[y][];
if (maxn[y][]>m1){m2=m1;m1=maxn[y][];}
else if (maxn[y][]>m2&&maxn[y][]!=m1) m2=maxn[y][];
}
if (m1==) return;
if (c==m1)
{
if (m2==) return;
d=min(d,c-m2);
}
else d=min(d,c-m1);
}
[BJOI 2010]次小生成树Tree的更多相关文章
- BZOJ 1977: [BeiJing2010组队]次小生成树 Tree( MST + 树链剖分 + RMQ )
做一次MST, 枚举不在最小生成树上的每一条边(u,v), 然后加上这条边, 删掉(u,v)上的最大边(或严格次大边), 更新答案. 树链剖分然后ST维护最大值和严格次大值..倍增也是可以的... - ...
- 1977: [BeiJing2010组队]次小生成树 Tree
1977: [BeiJing2010组队]次小生成树 Tree https://lydsy.com/JudgeOnline/problem.php?id=1977 题意: 求严格次小生成树,即边权和不 ...
- 【BZOJ1977】[BeiJing2010组队]次小生成树 Tree 最小生成树+倍增
[BZOJ1977][BeiJing2010组队]次小生成树 Tree Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C ...
- [BeiJing2010组队]次小生成树 Tree
1977: [BeiJing2010组队]次小生成树 Tree Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 5168 Solved: 1668[S ...
- 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...
- [BeiJing2010组队][BZOJ 1977]次小生成树 Tree
话说这个[BeiJing2010组队]是个什喵玩意? 这是一道严格次小生成树,而次小生成树的做法是层出不穷的 MATO IS NO.1 的博客里对两种算法都有很好的解释,值得拥有: (果然除我以外, ...
- 【次小生成树】bzoj1977 [BeiJing2010组队]次小生成树 Tree
Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一 ...
- (luogu4180) [Beijing2010组队]次小生成树Tree
严格次小生成树 首先看看如果不严格我们怎么办. 非严格次小生成树怎么做 由此,我们发现一个结论,求非严格次小生成树,只需要先用kruskal算法求得最小生成树,然后暴力枚举非树边,替换路径最大边即可. ...
- BZOJ 1977[BeiJing2010组队]次小生成树 Tree - 生成树
描述: 就是求一个次小生成树的边权和 传送门 题解 我们先构造一个最小生成树, 把树上的边记录下来. 然后再枚举每条非树边(u, v, val),在树上找出u 到v 路径上的最小边$g_0$ 和 严格 ...
随机推荐
- Java基础学习笔记二十三 Java核心语法之反射
类加载器 类的加载 当程序要使用某个类时,如果该类还未被加载到内存中,则系统会通过加载,链接,初始化三步来实现对这个类进行初始化. 加载就是指将class文件读入内存,并为之创建一个Class对象.任 ...
- Java暑假作业
一.电影观后感 电影<摔跤吧!爸爸>观后感 二.下学期的计划与目标 大一学年总结: 参与了大大小小的学院活动,例如机器人搭建.辩论赛,也参加了学生会的部门,参与了组织活动.通过参与活动获 ...
- 开启Linux的share
1.挂载Install Vmare Tool 2.解压VMwareTools.tar.gz 3.安装share目录 4.shared Folders Enabled 添加共享的目录. 在自己的Unb ...
- 201621123031 《Java程序设计》第14周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 2. 使用数据库技术改造你的系统 2.1 简述如何使用数据库技术改造你的系统.要建立什么表?截图你的表设计. 答 ...
- Hyper-V虚拟机故障导致数据文件丢失的数据恢复全过程
简介: 由于MD3200存储中虚拟机的数据文件丢失,导致整个Hyper-V服务瘫痪,虚拟机无法使用,故障环境为Windows Server 2012服务器,系统中部署了Hyper-V虚拟机环境,虚拟机 ...
- JAVA_SE基础——68.RunTime类
RunTime类代表Java程序的运行时环境,每一个Java程序都有一个与之对应的Runtime实例,应用程序通过该对象与运行时环境相连,应用程序不能创建自己的Runtime实例,但可以通过getRu ...
- JAVA_SE基础——1.JDK&JRE下载及安装
这是我学了JAVA来写的第一篇博客: 我首先是在传智播客领了张.毕向东老师的免费JAVA学习光盘来学习! 下面我来教大家安装使用JAVA时候必备的JDK 1.首先上甲骨文公司的官方网站下载JDK的安装 ...
- 【learning】多项式相关(求逆、开根、除法、取模)
(首先要%miskcoo,这位dalao写的博客(这里)实在是太强啦qwq大部分多项式相关的知识都是从这位dalao博客里面学的,下面这篇东西是自己对其博客学习后的一些总结和想法,大部分是按照其博客里 ...
- 一种dubbo逻辑路由方案
背景介绍 现在很多的公司都在用dubbo.springcloud做为服务化/微服务的开发框架,服务化之后应用越来越多,链路越来越长,服务环境的治理变的很困难.比如:研发团队的人很多的,同时有几个分支在 ...
- OpendID是什么?
一.OpenID的概念 1.问题的提出 2.OpenID是什么? 3.规范演进 二.OpenID 的运行原理 1.参与者 2.运行原理 3.典型场景 4.开源实现 5.优点&缺点 优点: ...