[LeetCode] Sum of Square Numbers 平方数之和
Given a non-negative integer c, your task is to decide whether there're two integers a and b such that a2 + b2 = c.
Example 1:
Input: 5
Output: True
Explanation: 1 * 1 + 2 * 2 = 5
Example 2:
Input: 3
Output: False
这道题让我们求一个数是否能由平方数之和组成,刚开始博主没仔细看题,没有看到必须要是两个平方数之和,博主以为任意一个就可以。所以写了个带优化的递归解法,博主已经不是上来就无脑暴力破解的辣个青葱骚年了,直接带优化。可是居然对 14 返回 false,难道 14 不等于 1+4+9 吗,结果仔细一看,必须要两个平方数之和。好吧,那么递归都省了,直接判断两次就行了。我们可以从c的平方根,注意即使c不是平方数,也会返回一个整型数。然后我们判断如果 i*i 等于c,说明c就是个平方数,只要再凑个0,就是两个平方数之和,返回 true;如果不等于的话,那么算出差值 c - i*i,如果这个差值也是平方数的话,返回 true。遍历结束后返回 false,参见代码如下:
解法一:
class Solution {
public:
bool judgeSquareSum(int c) {
for (int i = sqrt(c); i >= ; --i) {
if (i * i == c) return true;
int d = c - i * i, t = sqrt(d);
if (t * t == d) return true;
}
return false;
}
};
下面这种方法用到了 HashSet,从0遍历到c的平方根,对于每个i*i,都加入 HashSet 中,然后计算 c - i*i,如果这个差值也在 HashSet 中,返回 true,遍历结束返回 false,参见代码如下:
解法二:
class Solution {
public:
bool judgeSquareSum(int c) {
unordered_set<int> s;
for (int i = ; i <= sqrt(c); ++i) {
s.insert(i * i);
if (s.count(c - i * i)) return true;
}
return false;
}
};
上面两种方法都不是很高效,来看下面这种高效的解法。论坛上有人称之为二分解法,但是博主怎么觉得不是呢,虽然样子很像,但是并没有折半的操作啊。这里用a和b代表了左右两个范围,分别为0和c的平方根,然后 while 循环遍历,如果 a*a + b*b 刚好等于c,那么返回 true;如果小于c,则a增大1;反之如果大于c,则b自减1,参见代码如下:
解法三:
class Solution {
public:
bool judgeSquareSum(int c) {
long a = , b = sqrt(c);
while (a <= b) {
if (a * a + b * b == c) return true;
else if (a * a + b * b < c) ++a;
else --b;
}
return false;
}
};
下面这种解法基于费马平方和定理 Fermat's theorem on sums of two squares 的一般推广形式:当某个数字的 4k+3 型的质数因子的个数均为偶数时,其可以拆分为两个平方数之和(each prime that is congruent to 3 mod 4 appears with an even exponent in the prime factorization of the number)。那么我们只要统计其质数因子的个数,并且判读,若其为 4k+3 型且出现次数为奇数的话直接返回 false。这里,我们从2开始遍历,若能整除2,则计数器加1,并且c也要除以2。这样我们找到都会是质数因子,因为非质数因子中的因子已经在之前被除掉了,这也是个 trick,需要自己好好想一下。最终在循环退出后,我们还要再判断一下,若剩余的质数因子还是个 4k+3 型,那么返回 false,否则返回 true,参见代码如下:
解法四:
class Solution {
public:
bool judgeSquareSum(int c) {
for (int i = ; i * i <= c; ++i) {
if (c % i != ) continue;
int cnt = ;
while (c % i == ) {
++cnt;
c /= i;
}
if (i % == && cnt % != ) return false;
}
return c % != ;
}
};
类似题目:
参考资料:
https://leetcode.com/problems/sum-of-square-numbers/
https://leetcode.com/problems/sum-of-square-numbers/discuss/104938/simple-c-solution
https://leetcode.com/problems/sum-of-square-numbers/discuss/104930/java-two-pointers-solution
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Sum of Square Numbers 平方数之和的更多相关文章
- [LeetCode] 633. Sum of Square Numbers 平方数之和
Given a non-negative integer c, your task is to decide whether there're two integers a and b such th ...
- LeetCode 633. Sum of Square Numbers平方数之和 (C++)
题目: Given a non-negative integer c, your task is to decide whether there're two integers a and b suc ...
- Leetcode633.Sum of Square Numbers平方数之和
给定一个非负整数 c ,你要判断是否存在两个整数 a 和 b,使得 a2 + b2 = c. 示例1: 输入: 5 输出: True 解释: 1 * 1 + 2 * 2 = 5 示例2: 输入: 3 ...
- [LeetCode] Sum of Two Integers 两数之和
Calculate the sum of two integers a and b, but you are not allowed to use the operator + and -. Exam ...
- LeetCode Sum of Square Numbers
原题链接在这里:https://leetcode.com/problems/sum-of-square-numbers/description/ 题目: Given a non-negative in ...
- C#版 - Leetcode 633. 平方数之和 - 题解
版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...
- C#刷遍Leetcode面试题系列连载(4) No.633 - 平方数之和
上篇文章中一道数学问题 - 自除数,今天我们接着分析 LeetCode 中的另一道数学题吧~ 今天要给大家分析的面试题是 LeetCode 上第 633 号问题, Leetcode 633 - 平方数 ...
- Leetcode之二分法专题-167. 两数之和 II - 输入有序数组(Two Sum II - Input array is sorted)
Leetcode之二分法专题-167. 两数之和 II - 输入有序数组(Two Sum II - Input array is sorted) 给定一个已按照升序排列 的有序数组,找到两个数使得它们 ...
- 【JavaScript】Leetcode每日一题-平方数之和
[JavaScript]Leetcode每日一题-平方数之和 [题目描述] 给定一个非负整数 c ,你要判断是否存在两个整数 a 和 b,使得 a2 + b2 = c . 示例1: 输入:c = 5 ...
随机推荐
- JavaWeb学习笔记五 会话技术Cookie&Session
什么是会话技术? 例如网站的购物系统,用户将购买的商品信息存储到哪里?因为Http协议是无状态的,也就是说每个客户访问服务器端资源时,服务器并不知道该客户端是谁,所以需要会话技术识别客户端的状态.会话 ...
- web服务器学习1---httpd-2.4.29源码手动编译安装
环境准备: 系统:CentOS 7.4 软件:httpd-2.4.29 一 Apache主要特点 apache服务器在功能,性能和安全性等方面表现比较突出,可以较好地满足web服务器地应用需求.主要 ...
- Docker深入浅出系列教程——Docker简介
我是架构师张飞洪,钻进浩瀚代码,十年有余,人不堪其累,吾不改其乐.如果你和我的看法不一样,请关注我的头条号,我们一起奇闻共赏,疑义相析. 本节属于入门简介,从三个小方面进行简单介绍Docker. Do ...
- 【福大软工】 W班级总成绩排名2
评分链接: 选题报告 结对第二次作业 需求分析 随堂测试 总分排名:
- [高级软件工程教学]团队Alpha阶段成绩汇总
一.作业地址: https://edu.cnblogs.com/campus/fzu/AdvancedSoftwareEngineering/homework/1408 https://edu.cnb ...
- Beta No.7
今天遇到的困难: 构造新适配器的时候出现了某些崩溃的问题 ListView监听器有部分的Bug 今天完成的任务: 陈甘霖:完成相机调用和图库功能,完成阿尔法项目遗留下来的位置调用问题,实现百度定位 蔡 ...
- ajax 返回Json方法
public static void sendJsonData(String data) { ActionContext ac = ActionContext.getContext(); HttpSe ...
- 201621123031 《Java程序设计》第12周学习总结
作业12-流与文件 1.本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 在Java中的java.io包中定义了许多类专门负责处理各种方式的输入与输出.其中,所有输入 ...
- 【基础知识】Flex-弹性布局原来如此简单!!
简言 布局的传统解决方案是基于盒状模型,依赖 display + position + float 方式来实现,灵活性较差.2009年,W3C提出了一种新的方案-Flex,Flex是Flexible ...
- JAVA_SE基础——36.static的实际应用
什么时候定义静态函数 如果功能内部没有访问到非静态数据(对象的特有数据.那么该功能就可以定义为静态) P.S. 静态方法作为类和接口的重要组成部分,可以通过类名或接口直接访问,通常将那些使用频率较高的 ...