HDU 4135:Co-prime(容斥+二进制拆分)
Co-prime
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6869 Accepted Submission(s): 2710
Problem Description
Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
Input
The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).
Output
For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.
Sample Input
2
1 10 2
3 15 5
Sample Output
Case #1: 5
Case #2: 10
Hint
In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.
题意
给出三个数a,b,n,求区间[a.b]中有多少和n互质的数
思路
先把n的质因子记录下来,然后利用容斥+二进制拆分分解求出1~(a-1)和1~b之间的与n互质的个数ans1和ans2,然后减去区间中数的个数减去(ans2-ans1)即可
AC代码
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <limits.h>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <set>
#include <string>
#define ll long long
#define ms(a) memset(a,0,sizeof(a))
#define pi acos(-1.0)
#define INF 0x3f3f3f3f
const double E=exp(1);
const int maxn=1e6+10;
using namespace std;
int A[maxn];//用来存放质因子
ll gcd(ll a,ll b)
{
return b?gcd(b,a%b):a;
}
ll lcm(ll a,ll b)
{
return a/gcd(a,b)*b;
}
int main(int argc, char const *argv[])
{
int t;
ll a,b,n;
scanf("%d",&t);
int x=0;
while(t--)
{
ll ans1,ans;
ans=ans1=0;
map<int,int>mmp;//记录质因子是否出现过
scanf("%lld%lld%lld",&a,&b,&n);
ll m=n;
int k=0;
for(int i=2;i*i<=m;i++)
{
if(m%i==0)
{
while(m%i==0)
{
if(mmp[i]==0)
{
A[k++]=i;
mmp[i]=1;
}
m/=i;
}
}
}
if(m>1)
{
A[k++]=m;
mmp[m]=1;
}
for(int i=1;i<(1<<k);i++)
{
int cnt=0;
ll tmp=1;
for(int j=0;j<k;j++)
{
if(i>>j&1)
{
cnt++;
tmp=lcm(tmp,A[j]);
}
}
if(cnt&1)
{
ans+=(a-1)/tmp;
ans1+=(b)/tmp;
}
else
{
ans-=(a-1)/tmp;
ans1-=b/tmp;
}
}
printf("Case #%d: %lld\n",++x,(b-a+1)-ans1+ans);
}
return 0;
}
HDU 4135:Co-prime(容斥+二进制拆分)的更多相关文章
- HDU 4135 Co-prime(容斥:二进制解法)题解
题意:给出[a,b]区间内与n互质的个数 思路:如果n比较小,我们可以用欧拉函数解决,但是n有1e9.要求区间内互质,我们可以先求前缀内互质个数,即[1,b]内与n互质,求互质,可以转化为求不互质,也 ...
- 题解报告:hdu 4135 Co-prime(容斥定理入门)
Problem Description Given a number N, you are asked to count the number of integers between A and B ...
- HDU 4135 Co-prime(容斥+数论)
Co-prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- C - Visible Trees HDU - 2841 -莫比乌斯函数-容斥
C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - ...
- HDU 5297 Y sequence 容斥 迭代
Y sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5297 Description Yellowstar likes integer ...
- hdu 6053 trick gcd 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...
- HDU 4336 Card Collector(容斥)
题意:要收集n种卡片,每种卡片能收集到的概率位pi,求收集完这n种卡片的期望.其中sigma{pi} <=1; 思路:容斥原理.就是一加一减,那么如何算期望呢.如果用二进制表示,0表示未收集到, ...
- HDU 3970 Harmonious Set 容斥欧拉函数
pid=3970">链接 题解:www.cygmasot.com/index.php/2015/08/17/hdu_3970 给定n 求连续整数[0,n), 中随意选一些数使得选出的 ...
- [HDU4135]CO Prime(容斥)
也许更好的阅读体验 \(\mathcal{Description}\) \(t\)组询问,每次询问\(l,r,k\),问\([l,r]\)内有多少数与\(k\)互质 \(0<l<=r< ...
随机推荐
- HDU 6106 Classes
Classes 思路:a中包含的元素:只参加a的,只参加a且b的,只参加a且c的,只参加a且b且c的: b中包含的元素:只参加b的,只参加a且b的,只参加b且c的,只参加a且b且c的: c中包含的元素 ...
- 20170528xlVBA凑数一例
Public Sub MakeUp() Dim Sht As Worksheet Set Sht = ThisWorkbook.Worksheets("设置") Dim Total ...
- Android Studio apk打包,keystore.jks文件生成,根据keystore密钥获取SHA1安全码
keystore.jks文件生成,打包APK 选择Build > Generate Signed APK 出现如下弹框: 然后点击Create new...(创建的意思)出现另一个弹框,在做如下 ...
- CF938G Shortest Path Queries
首先只有询问的话就是个WC的题,线性基+生成树搞一搞就行. 进一步,考虑如果修改操作只有加边怎么做. 好像也没有什么变化,只不过需要在线地往线性基里插入东西而已. 删边呢? 注意到线性基这个玩意是不支 ...
- 『Scrapy』终端调用&选择器方法
Scrapy终端 示例,输入如下命令后shell会进入Python(或IPython)交互式界面: scrapy shell "http://www.itcast.cn/channel/te ...
- P3377 【模板】左偏树(可并堆)
//#pragma comment(linker, "/stack:200000000") //#pragma GCC optimize("Ofast,no-stack- ...
- 基于binlog的增量备份
1.1 增量备份简介 增量备份是指在一次全备份或上一次增量备份后,以后每次的备份只需备份与前一次相比增加或者被修改的文件.这就意味着,第一次增量备份的对象是进行全备后所产生的增加和修改的文件:第二次增 ...
- The Architecture of Open Source Applications——阅读笔记part 1
Architects look at thousands of buildings during their training, and study critiques of those buildi ...
- spark RDD操作的底层实现原理
RDD操作闭包外部变量原则 RDD相关操作都需要传入自定义闭包函数(closure),如果这个函数需要访问外部变量,那么需要遵循一定的规则,否则会抛出运行时异常.闭包函数传入到节点时,需要经过下面的步 ...
- Logger.getLogger()和LogFactory.getLog()的区别
第一.Logger.getLogger()和LogFactory.getLog()的区别 1.Logger.getLogger()是使用log4j的方式记录日志: 2.LogFactory.getLo ...