HDU 4135:Co-prime(容斥+二进制拆分)
Co-prime
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6869 Accepted Submission(s): 2710
Problem Description
Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
Input
The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).
Output
For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.
Sample Input
2
1 10 2
3 15 5
Sample Output
Case #1: 5
Case #2: 10
Hint
In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.
题意
给出三个数a,b,n,求区间[a.b]中有多少和n互质的数
思路
先把n的质因子记录下来,然后利用容斥+二进制拆分分解求出1~(a-1)和1~b之间的与n互质的个数ans1和ans2,然后减去区间中数的个数减去(ans2-ans1)即可
AC代码
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <limits.h>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <set>
#include <string>
#define ll long long
#define ms(a) memset(a,0,sizeof(a))
#define pi acos(-1.0)
#define INF 0x3f3f3f3f
const double E=exp(1);
const int maxn=1e6+10;
using namespace std;
int A[maxn];//用来存放质因子
ll gcd(ll a,ll b)
{
return b?gcd(b,a%b):a;
}
ll lcm(ll a,ll b)
{
return a/gcd(a,b)*b;
}
int main(int argc, char const *argv[])
{
int t;
ll a,b,n;
scanf("%d",&t);
int x=0;
while(t--)
{
ll ans1,ans;
ans=ans1=0;
map<int,int>mmp;//记录质因子是否出现过
scanf("%lld%lld%lld",&a,&b,&n);
ll m=n;
int k=0;
for(int i=2;i*i<=m;i++)
{
if(m%i==0)
{
while(m%i==0)
{
if(mmp[i]==0)
{
A[k++]=i;
mmp[i]=1;
}
m/=i;
}
}
}
if(m>1)
{
A[k++]=m;
mmp[m]=1;
}
for(int i=1;i<(1<<k);i++)
{
int cnt=0;
ll tmp=1;
for(int j=0;j<k;j++)
{
if(i>>j&1)
{
cnt++;
tmp=lcm(tmp,A[j]);
}
}
if(cnt&1)
{
ans+=(a-1)/tmp;
ans1+=(b)/tmp;
}
else
{
ans-=(a-1)/tmp;
ans1-=b/tmp;
}
}
printf("Case #%d: %lld\n",++x,(b-a+1)-ans1+ans);
}
return 0;
}
HDU 4135:Co-prime(容斥+二进制拆分)的更多相关文章
- HDU 4135 Co-prime(容斥:二进制解法)题解
题意:给出[a,b]区间内与n互质的个数 思路:如果n比较小,我们可以用欧拉函数解决,但是n有1e9.要求区间内互质,我们可以先求前缀内互质个数,即[1,b]内与n互质,求互质,可以转化为求不互质,也 ...
- 题解报告:hdu 4135 Co-prime(容斥定理入门)
Problem Description Given a number N, you are asked to count the number of integers between A and B ...
- HDU 4135 Co-prime(容斥+数论)
Co-prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- C - Visible Trees HDU - 2841 -莫比乌斯函数-容斥
C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - ...
- HDU 5297 Y sequence 容斥 迭代
Y sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5297 Description Yellowstar likes integer ...
- hdu 6053 trick gcd 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...
- HDU 4336 Card Collector(容斥)
题意:要收集n种卡片,每种卡片能收集到的概率位pi,求收集完这n种卡片的期望.其中sigma{pi} <=1; 思路:容斥原理.就是一加一减,那么如何算期望呢.如果用二进制表示,0表示未收集到, ...
- HDU 3970 Harmonious Set 容斥欧拉函数
pid=3970">链接 题解:www.cygmasot.com/index.php/2015/08/17/hdu_3970 给定n 求连续整数[0,n), 中随意选一些数使得选出的 ...
- [HDU4135]CO Prime(容斥)
也许更好的阅读体验 \(\mathcal{Description}\) \(t\)组询问,每次询问\(l,r,k\),问\([l,r]\)内有多少数与\(k\)互质 \(0<l<=r< ...
随机推荐
- angular组件层次与军事指挥层级职责的联系
又继续读angular文档,发现自己之前理解还是有误.按官方文档的思路service不是属于component的,是属于module的.module才是负责完整领域逻辑的单位.demo的英雄编辑器给我 ...
- ArcGIS API for Silverlight——小滑块
Widgets翻译过来是小玩具.如果使用过Dojo或者ExtJS等js框架肯定会了解到这个“小玩具”也有大用处,能够在很大程度上减少我们的工作量,快速完成功能需求.能减少多大工作量呢?让我们先来,点击 ...
- LeetCode 22. Generate Parentheses(构造)
题目大意:给n个'(' 和 ')',构造出所有的长度为2*n并且有效的(可匹配的)字符串. 题目分析:这道题不难,可以直接搜索出所有可能的字符串,然后再逐一判断是否合法即可.但是还有更好的办法,实际上 ...
- ORACLE常见方法使用(转)
1.DBMS_LOB包的使用 2.如何释放DBMS_LOB.CREATETEMPORARY的空间 3.oracle数组
- iOS UI-QQ聊天布局
一.Model BWMessage.h #import <Foundation/Foundation.h> typedef enum{ BWMessageMe = ,//表示自己 BWMe ...
- Oracle12c中多宿主环境(CDB&PDB)的数据库触发器(Database Trigger)
Oracle12c中可插拔数据库(PDBs)上的多宿主数据库触发器 随着多宿主选项的引入,数据库事件触发器可以在CDB和PDB范围内创建. 1. 触发器范围 为了在CDB中创建数据库事件触发器,需 ...
- Splunk Enterprise architecture——转发器本质上是日志收集client附加负载均衡,indexer是分布式索引,外加一个集中式管理协调的中心节点
Splunk Enterprise architecture and processes This topic discusses the internal architecture and proc ...
- JavaScript学习总结(五)——Javascript中==和===的区别
一.JavaScript"=="的作用 当==两边的内容是字符串时,则比较字符串的内容是否相等. 当==两边的内容是数字时,则比较数字的大小是否相等. 当==两边的内容是对象或者是 ...
- POJ 3176 Cow Bowling(dp)
POJ 3176 Cow Bowling 题目简化即为从一个三角形数列的顶端沿对角线走到底端,所取得的和最大值 7 * 3 8 * 8 1 0 * 2 7 4 4 * 4 5 2 6 5 该走法即为最 ...
- sgu 121. Bridges painting 列举情况 难度:1
121. Bridges painting time limit per test: 0.25 sec. memory limit per test: 4096 KB New Berland cons ...