转自:https://blog.csdn.net/z69183787/article/details/53005961

fst是完全兼容JDK序列化协议的系列化框架,序列化速度大概是JDK的4-10倍,大小是JDK大小的1/3左右。
首先引入pom
<dependency>
<groupId>de.ruedigermoeller</groupId>
<artifactId>fst</artifactId>
<version>2.04</version>
</dependency>
package zookeeper.seria;

import java.io.Serializable;

public class FSTSeriazle {

	public static void main(String[] args) {
User bean = new User();
bean.setUsername("xxxxx");
bean.setPassword("123456");
bean.setAge(1000000);
System.out.println("序列化 , 反序列化 对比测试:");
long size = 0;
long time1 = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
byte[] jdkserialize = JRedisSerializationUtils.jdkserialize(bean);
size += jdkserialize.length;
JRedisSerializationUtils.jdkdeserialize(jdkserialize);
}
System.out.println("原生序列化方案[序列化10000次]耗时:"
+ (System.currentTimeMillis() - time1) + "ms size:=" + size); size = 0;
long time2 = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
byte[] serialize = JRedisSerializationUtils.serialize(bean);
size += serialize.length;
User u = (User) JRedisSerializationUtils.unserialize(serialize);
}
System.out.println("fst序列化方案[序列化10000次]耗时:"
+ (System.currentTimeMillis() - time2) + "ms size:=" + size);
size = 0;
long time3 = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
byte[] serialize = JRedisSerializationUtils.kryoSerizlize(bean);
size += serialize.length;
User u = (User) JRedisSerializationUtils.kryoUnSerizlize(serialize);
}
System.out.println("kryo序列化方案[序列化10000次]耗时:"
+ (System.currentTimeMillis() - time3) + "ms size:=" + size); } } class User implements Serializable{ private String username;
private int age;
private String password; public String getUsername() {
return username;
} public void setUsername(String username) {
this.username = username;
} public int getAge() {
return age;
} public void setAge(int age) {
this.age = age;
} public String getPassword() {
return password;
} public void setPassword(String password) {
this.password = password;
} }
 结果
序列化 , 反序列化 对比测试:
原生序列化方案[序列化10000次]耗时:458ms size:=1160000
fst序列化方案[序列化10000次]耗时:184ms size:=550000
kryo序列化方案[序列化10000次]耗时:462ms size:=390000
 工具类
package zookeeper.seria;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream; import org.nustaq.serialization.FSTConfiguration; import com.esotericsoftware.kryo.Kryo;
import com.esotericsoftware.kryo.io.Input;
import com.esotericsoftware.kryo.io.Output; public class JRedisSerializationUtils { public JRedisSerializationUtils() {
} static FSTConfiguration configuration = FSTConfiguration
// .createDefaultConfiguration();
.createStructConfiguration(); public static byte[] serialize(Object obj) {
return configuration.asByteArray(obj);
} public static Object unserialize(byte[] sec) {
return configuration.asObject(sec);
} public static byte[] kryoSerizlize(Object obj) {
Kryo kryo = new Kryo();
byte[] buffer = new byte[2048];
try(
Output output = new Output(buffer);
) { kryo.writeClassAndObject(output, obj);
return output.toBytes();
} catch (Exception e) {
}
return buffer;
} static Kryo kryo = new Kryo();
public static Object kryoUnSerizlize(byte[] src) {
try(
Input input = new Input(src);
){
return kryo.readClassAndObject(input);
}catch (Exception e) {
}
return kryo;
} // jdk原生序列换方案
public static byte[] jdkserialize(Object obj) {
try (ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(baos);) {
oos.writeObject(obj);
return baos.toByteArray();
} catch (IOException e) {
throw new RuntimeException(e);
}
} public static Object jdkdeserialize(byte[] bits) {
try (ByteArrayInputStream bais = new ByteArrayInputStream(bits);
ObjectInputStream ois = new ObjectInputStream(bais); ) {
return ois.readObject();
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}

FSTConfiguration 高性能序列化框架FST的更多相关文章

  1. java序列化框架(protobuf、thrift、kryo、fst、fastjson、Jackson、gson、hessian)性能对比

     我们为什么要序列化 举个栗子:下雨天我们要打伞,但是之后我们要把伞折叠起来,方便我们存放.那么运用到我们java中道理是一样的,我们要将数据分解成字节流,以便存储在文件中或在网络上传输,这叫序列 ...

  2. Netty高性能网络应用框架对标P7面试题分享v4.1.70.Final

    概述 **本人博客网站 **IT小神 www.itxiaoshen.com 定义 Netty官网 https://netty.io/ 最新版本为4.1.70.Final Netty是一个异步的.事件驱 ...

  3. 常见的序列化框架及Protobuf序列化原理

    原文链接:https://www.jianshu.com/p/657fbf347934 https://www.cnblogs.com/javazhiyin/p/11375553.html https ...

  4. 5.3.4 Hadoop序列化框架

    序列化框架 除了writable实现序列化之外,只要实现让类型和二进制流相互转换,都可以作为hadoop的序列化类型,为此Hadoop提供了一个序列化框架接口,他们在org.apache.hadoop ...

  5. Java序列化框架性能比較

    博客: http://colobu.com jvm-serializers提供了一个非常好的比較各种Java序列化的的測试套件. 它罗列了各种序列化框架. 能够自己主动生成測试报告. 我在AWS c3 ...

  6. 序列化战争:主流序列化框架Benchmark

    序列化战争:主流序列化框架Benchmark GitHub上有这样一个关于序列化的Benchmark,被好多文章引用.但这个项目考虑到完整性,代码有些复杂.为了个人学习,自己实现了个简单的Benchm ...

  7. 高性能NIO框架Netty-对象传输

    http://cxytiandi.com/blog/detail/17403 上篇文章高性能NIO框架Netty入门篇我们对Netty做了一个简单的介绍,并且写了一个入门的Demo,客户端往服务端发送 ...

  8. 基于Protobuf的分布式高性能RPC框架——Navi-Pbrpc

    基于Protobuf的分布式高性能RPC框架——Navi-Pbrpc 二月 8, 2016 1 简介 Navi-pbrpc框架是一个高性能的远程调用RPC框架,使用netty4技术提供非阻塞.异步.全 ...

  9. Mapreduce之序列化框架(转自http://blog.csdn.net/lastsweetop/article/details/9376495)

    框架简介 MapReduce仅仅可以支持Writable做key,value吗?答案是否定的.事实上,一切类型都是支持的,只需满足一个小小的条件:每个类型是以二进制流的形式传输.为此Hadoop提供了 ...

随机推荐

  1. angular惰性加载拓展剖析

    最近把一个比较旧的业余项目重新升级了下,将主文件进行了剥离,增加了些惰性加载的配置,将过程中一些零散的知识点做个总结,同时尽量深入原理实现层面. 项目环境: 前端框架:angular2.0.0-bet ...

  2. Java 常用对象-Math类

    2017-11-02 21:26:18 Math类:Math 类包含用于执行基本数学运算的方法,如初等指数.对数.平方根和三角函数. *属性摘要 *常用方法 random() : 返回[0.0,1.0 ...

  3. ASCII码、ISO8859-1、Unicode、GBK和UTF-8 的区别

    为什么需要编码? 计算机中最小的存储单位是字节(byte),一个字节所能表示的字符数又有限,1byte=8bit,一个字节最多也只能表示255个字符,而世界上的语种又多,都有各种不同的字符,无法用一个 ...

  4. MSSQL 一坑 SQL Management Studio 管理工具的快捷方式被删掉了

    如果确定已经安装的情况下,到这里去找下吧(我这里用的是sql 2008) C:\Program Files\Microsoft SQL Server\100\Tools\Binn\VSShell\Co ...

  5. codeforces 576a//Vasya and Petya's Game// Codeforces Round #319 (Div. 1)

    题意:猜数游戏变种.先选好猜的数,对方会告诉你他想的那个数(1-n)能不能整除你猜的数,问最少猜几个数能保证知道对方想的数是多少? 对一个质数p,如果p^x不猜,那么就无法区分p^(x-1)和p^x, ...

  6. Android动画(Animations)

    动画类型Android的animation由四种类型组成 XML中 alpha  : 渐变透明度动画效果 scale  :渐变尺寸伸缩动画效果 translate  : 画面转换位置移动动画效果 ro ...

  7. Docker 构建 redis 集群

    安装docker 1.yum install docker 方法一: 1. docker pull redis 2.docker run -d --name redis-1 -p 7001:6379 ...

  8. 『OpenCV3』简单图片处理

    cv2和numpy深度契合,其图片读入后就是numpy.array,只不过dtype比较不常用而已,支持全部数组方法 数组既图片 import numpy as np import cv2 img = ...

  9. Silverlight 5 Developer Rumtime

    因为更新了Silverlight SDK,所以也要更新相应的Silverlight开发运行时. Silverlight 5 Developer Rumtime (32bit): http://go.m ...

  10. Java容器——Map接口

    1.定义 Map用于保存存在映射关系<key, value>的数据.其中key值不能重复(使用equals()方法比较),value值可以重复. 2.常用实现类 HashMap:和Hash ...