转自:https://blog.csdn.net/z69183787/article/details/53005961

fst是完全兼容JDK序列化协议的系列化框架,序列化速度大概是JDK的4-10倍,大小是JDK大小的1/3左右。
首先引入pom
<dependency>
<groupId>de.ruedigermoeller</groupId>
<artifactId>fst</artifactId>
<version>2.04</version>
</dependency>
package zookeeper.seria;

import java.io.Serializable;

public class FSTSeriazle {

	public static void main(String[] args) {
User bean = new User();
bean.setUsername("xxxxx");
bean.setPassword("123456");
bean.setAge(1000000);
System.out.println("序列化 , 反序列化 对比测试:");
long size = 0;
long time1 = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
byte[] jdkserialize = JRedisSerializationUtils.jdkserialize(bean);
size += jdkserialize.length;
JRedisSerializationUtils.jdkdeserialize(jdkserialize);
}
System.out.println("原生序列化方案[序列化10000次]耗时:"
+ (System.currentTimeMillis() - time1) + "ms size:=" + size); size = 0;
long time2 = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
byte[] serialize = JRedisSerializationUtils.serialize(bean);
size += serialize.length;
User u = (User) JRedisSerializationUtils.unserialize(serialize);
}
System.out.println("fst序列化方案[序列化10000次]耗时:"
+ (System.currentTimeMillis() - time2) + "ms size:=" + size);
size = 0;
long time3 = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
byte[] serialize = JRedisSerializationUtils.kryoSerizlize(bean);
size += serialize.length;
User u = (User) JRedisSerializationUtils.kryoUnSerizlize(serialize);
}
System.out.println("kryo序列化方案[序列化10000次]耗时:"
+ (System.currentTimeMillis() - time3) + "ms size:=" + size); } } class User implements Serializable{ private String username;
private int age;
private String password; public String getUsername() {
return username;
} public void setUsername(String username) {
this.username = username;
} public int getAge() {
return age;
} public void setAge(int age) {
this.age = age;
} public String getPassword() {
return password;
} public void setPassword(String password) {
this.password = password;
} }
 结果
序列化 , 反序列化 对比测试:
原生序列化方案[序列化10000次]耗时:458ms size:=1160000
fst序列化方案[序列化10000次]耗时:184ms size:=550000
kryo序列化方案[序列化10000次]耗时:462ms size:=390000
 工具类
package zookeeper.seria;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream; import org.nustaq.serialization.FSTConfiguration; import com.esotericsoftware.kryo.Kryo;
import com.esotericsoftware.kryo.io.Input;
import com.esotericsoftware.kryo.io.Output; public class JRedisSerializationUtils { public JRedisSerializationUtils() {
} static FSTConfiguration configuration = FSTConfiguration
// .createDefaultConfiguration();
.createStructConfiguration(); public static byte[] serialize(Object obj) {
return configuration.asByteArray(obj);
} public static Object unserialize(byte[] sec) {
return configuration.asObject(sec);
} public static byte[] kryoSerizlize(Object obj) {
Kryo kryo = new Kryo();
byte[] buffer = new byte[2048];
try(
Output output = new Output(buffer);
) { kryo.writeClassAndObject(output, obj);
return output.toBytes();
} catch (Exception e) {
}
return buffer;
} static Kryo kryo = new Kryo();
public static Object kryoUnSerizlize(byte[] src) {
try(
Input input = new Input(src);
){
return kryo.readClassAndObject(input);
}catch (Exception e) {
}
return kryo;
} // jdk原生序列换方案
public static byte[] jdkserialize(Object obj) {
try (ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(baos);) {
oos.writeObject(obj);
return baos.toByteArray();
} catch (IOException e) {
throw new RuntimeException(e);
}
} public static Object jdkdeserialize(byte[] bits) {
try (ByteArrayInputStream bais = new ByteArrayInputStream(bits);
ObjectInputStream ois = new ObjectInputStream(bais); ) {
return ois.readObject();
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}

FSTConfiguration 高性能序列化框架FST的更多相关文章

  1. java序列化框架(protobuf、thrift、kryo、fst、fastjson、Jackson、gson、hessian)性能对比

     我们为什么要序列化 举个栗子:下雨天我们要打伞,但是之后我们要把伞折叠起来,方便我们存放.那么运用到我们java中道理是一样的,我们要将数据分解成字节流,以便存储在文件中或在网络上传输,这叫序列 ...

  2. Netty高性能网络应用框架对标P7面试题分享v4.1.70.Final

    概述 **本人博客网站 **IT小神 www.itxiaoshen.com 定义 Netty官网 https://netty.io/ 最新版本为4.1.70.Final Netty是一个异步的.事件驱 ...

  3. 常见的序列化框架及Protobuf序列化原理

    原文链接:https://www.jianshu.com/p/657fbf347934 https://www.cnblogs.com/javazhiyin/p/11375553.html https ...

  4. 5.3.4 Hadoop序列化框架

    序列化框架 除了writable实现序列化之外,只要实现让类型和二进制流相互转换,都可以作为hadoop的序列化类型,为此Hadoop提供了一个序列化框架接口,他们在org.apache.hadoop ...

  5. Java序列化框架性能比較

    博客: http://colobu.com jvm-serializers提供了一个非常好的比較各种Java序列化的的測试套件. 它罗列了各种序列化框架. 能够自己主动生成測试报告. 我在AWS c3 ...

  6. 序列化战争:主流序列化框架Benchmark

    序列化战争:主流序列化框架Benchmark GitHub上有这样一个关于序列化的Benchmark,被好多文章引用.但这个项目考虑到完整性,代码有些复杂.为了个人学习,自己实现了个简单的Benchm ...

  7. 高性能NIO框架Netty-对象传输

    http://cxytiandi.com/blog/detail/17403 上篇文章高性能NIO框架Netty入门篇我们对Netty做了一个简单的介绍,并且写了一个入门的Demo,客户端往服务端发送 ...

  8. 基于Protobuf的分布式高性能RPC框架——Navi-Pbrpc

    基于Protobuf的分布式高性能RPC框架——Navi-Pbrpc 二月 8, 2016 1 简介 Navi-pbrpc框架是一个高性能的远程调用RPC框架,使用netty4技术提供非阻塞.异步.全 ...

  9. Mapreduce之序列化框架(转自http://blog.csdn.net/lastsweetop/article/details/9376495)

    框架简介 MapReduce仅仅可以支持Writable做key,value吗?答案是否定的.事实上,一切类型都是支持的,只需满足一个小小的条件:每个类型是以二进制流的形式传输.为此Hadoop提供了 ...

随机推荐

  1. CentOS 7 Install Redis

    1. yum install epel-release 2. yum install –y redis 3. start : systemctl start redis.service 4. stat ...

  2. Python面向对象编程、类

    一.面向对象编程 面向对象--Object Oriented Programming,简称oop,是一种程序设计思想.在说面向对象之前,先说一下什么是编程范式,编程范式你按照什么方式来去编程,去实现一 ...

  3. 使用Python生成双色球号码

    说来也是巧,今天和一个朋友聊天,说他运气不错应该买彩票,于是就想到了双色球的规则,就写了几行代码产生双色球号码,代码如下: import random,time def process_int(x): ...

  4. jenkins X 和k8s CI/CD

    架构 二.核心组件 1.包管理工具     1.1.helm工具包    https://github.com/helm/helm      1.2.Chartmuseum开源helm chart仓库 ...

  5. Data Guard Wait Events

    This note describes the wait events that monitor the performance of the log transport modes that wer ...

  6. File storage location distribution in firmware using binwalk

    tool function: Binwalk is a fast, easy to use tool for analyzing, reverse engineering, and extractin ...

  7. zabbix项目实践

    一,Zabbix生产环境监测案例概述 1.1 项目规划 [x] :主机分组 交换机 Nginx Tomcat MySQL Apache PHP-fpm redis(也有状态页, 自己研究) memca ...

  8. python执行系统命令后获取返回值

    import os, subprocess # os.system('dir') #执行系统命令,没有获取返回值,windows下中文乱码 # result = os.popen('dir') #执行 ...

  9. 做了一个vue的同步tree 的npm组件包

    前言:因为现成的tree组件没有找到.亦或是其依赖的其他东西太多,不太合适引入我们的项目,所以自己做了一个.大概样式: 在线例子: https://hamupp.github.io/t-vue-tre ...

  10. WordCount:C语言实现

    项目地址:https://github.com/m8705/WordCount 项目要求 wc.exe 是一个常见的工具,它能统计文本文件的字符数.单词数和行数. 这个项目要求写一个命令行程序,模仿已 ...