转自:https://blog.csdn.net/z69183787/article/details/53005961

fst是完全兼容JDK序列化协议的系列化框架,序列化速度大概是JDK的4-10倍,大小是JDK大小的1/3左右。
首先引入pom
<dependency>
<groupId>de.ruedigermoeller</groupId>
<artifactId>fst</artifactId>
<version>2.04</version>
</dependency>
package zookeeper.seria;

import java.io.Serializable;

public class FSTSeriazle {

	public static void main(String[] args) {
User bean = new User();
bean.setUsername("xxxxx");
bean.setPassword("123456");
bean.setAge(1000000);
System.out.println("序列化 , 反序列化 对比测试:");
long size = 0;
long time1 = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
byte[] jdkserialize = JRedisSerializationUtils.jdkserialize(bean);
size += jdkserialize.length;
JRedisSerializationUtils.jdkdeserialize(jdkserialize);
}
System.out.println("原生序列化方案[序列化10000次]耗时:"
+ (System.currentTimeMillis() - time1) + "ms size:=" + size); size = 0;
long time2 = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
byte[] serialize = JRedisSerializationUtils.serialize(bean);
size += serialize.length;
User u = (User) JRedisSerializationUtils.unserialize(serialize);
}
System.out.println("fst序列化方案[序列化10000次]耗时:"
+ (System.currentTimeMillis() - time2) + "ms size:=" + size);
size = 0;
long time3 = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
byte[] serialize = JRedisSerializationUtils.kryoSerizlize(bean);
size += serialize.length;
User u = (User) JRedisSerializationUtils.kryoUnSerizlize(serialize);
}
System.out.println("kryo序列化方案[序列化10000次]耗时:"
+ (System.currentTimeMillis() - time3) + "ms size:=" + size); } } class User implements Serializable{ private String username;
private int age;
private String password; public String getUsername() {
return username;
} public void setUsername(String username) {
this.username = username;
} public int getAge() {
return age;
} public void setAge(int age) {
this.age = age;
} public String getPassword() {
return password;
} public void setPassword(String password) {
this.password = password;
} }
 结果
序列化 , 反序列化 对比测试:
原生序列化方案[序列化10000次]耗时:458ms size:=1160000
fst序列化方案[序列化10000次]耗时:184ms size:=550000
kryo序列化方案[序列化10000次]耗时:462ms size:=390000
 工具类
package zookeeper.seria;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream; import org.nustaq.serialization.FSTConfiguration; import com.esotericsoftware.kryo.Kryo;
import com.esotericsoftware.kryo.io.Input;
import com.esotericsoftware.kryo.io.Output; public class JRedisSerializationUtils { public JRedisSerializationUtils() {
} static FSTConfiguration configuration = FSTConfiguration
// .createDefaultConfiguration();
.createStructConfiguration(); public static byte[] serialize(Object obj) {
return configuration.asByteArray(obj);
} public static Object unserialize(byte[] sec) {
return configuration.asObject(sec);
} public static byte[] kryoSerizlize(Object obj) {
Kryo kryo = new Kryo();
byte[] buffer = new byte[2048];
try(
Output output = new Output(buffer);
) { kryo.writeClassAndObject(output, obj);
return output.toBytes();
} catch (Exception e) {
}
return buffer;
} static Kryo kryo = new Kryo();
public static Object kryoUnSerizlize(byte[] src) {
try(
Input input = new Input(src);
){
return kryo.readClassAndObject(input);
}catch (Exception e) {
}
return kryo;
} // jdk原生序列换方案
public static byte[] jdkserialize(Object obj) {
try (ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(baos);) {
oos.writeObject(obj);
return baos.toByteArray();
} catch (IOException e) {
throw new RuntimeException(e);
}
} public static Object jdkdeserialize(byte[] bits) {
try (ByteArrayInputStream bais = new ByteArrayInputStream(bits);
ObjectInputStream ois = new ObjectInputStream(bais); ) {
return ois.readObject();
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}

FSTConfiguration 高性能序列化框架FST的更多相关文章

  1. java序列化框架(protobuf、thrift、kryo、fst、fastjson、Jackson、gson、hessian)性能对比

     我们为什么要序列化 举个栗子:下雨天我们要打伞,但是之后我们要把伞折叠起来,方便我们存放.那么运用到我们java中道理是一样的,我们要将数据分解成字节流,以便存储在文件中或在网络上传输,这叫序列 ...

  2. Netty高性能网络应用框架对标P7面试题分享v4.1.70.Final

    概述 **本人博客网站 **IT小神 www.itxiaoshen.com 定义 Netty官网 https://netty.io/ 最新版本为4.1.70.Final Netty是一个异步的.事件驱 ...

  3. 常见的序列化框架及Protobuf序列化原理

    原文链接:https://www.jianshu.com/p/657fbf347934 https://www.cnblogs.com/javazhiyin/p/11375553.html https ...

  4. 5.3.4 Hadoop序列化框架

    序列化框架 除了writable实现序列化之外,只要实现让类型和二进制流相互转换,都可以作为hadoop的序列化类型,为此Hadoop提供了一个序列化框架接口,他们在org.apache.hadoop ...

  5. Java序列化框架性能比較

    博客: http://colobu.com jvm-serializers提供了一个非常好的比較各种Java序列化的的測试套件. 它罗列了各种序列化框架. 能够自己主动生成測试报告. 我在AWS c3 ...

  6. 序列化战争:主流序列化框架Benchmark

    序列化战争:主流序列化框架Benchmark GitHub上有这样一个关于序列化的Benchmark,被好多文章引用.但这个项目考虑到完整性,代码有些复杂.为了个人学习,自己实现了个简单的Benchm ...

  7. 高性能NIO框架Netty-对象传输

    http://cxytiandi.com/blog/detail/17403 上篇文章高性能NIO框架Netty入门篇我们对Netty做了一个简单的介绍,并且写了一个入门的Demo,客户端往服务端发送 ...

  8. 基于Protobuf的分布式高性能RPC框架——Navi-Pbrpc

    基于Protobuf的分布式高性能RPC框架——Navi-Pbrpc 二月 8, 2016 1 简介 Navi-pbrpc框架是一个高性能的远程调用RPC框架,使用netty4技术提供非阻塞.异步.全 ...

  9. Mapreduce之序列化框架(转自http://blog.csdn.net/lastsweetop/article/details/9376495)

    框架简介 MapReduce仅仅可以支持Writable做key,value吗?答案是否定的.事实上,一切类型都是支持的,只需满足一个小小的条件:每个类型是以二进制流的形式传输.为此Hadoop提供了 ...

随机推荐

  1. Lua面向对象 --- 多态

    多态,简单的理解就是事物的多种形态.专业的术语说就是:同一个实现接口,使用不同的实例而执行不同的操作. 工程结构: BaseRoom.lua: BaseRoom = {} function BaseR ...

  2. mysql 将一张表里的数据插入到另一张表

    1. 表结构一样 insert into 表1 select * from 表2 2. 表结构不一样 insert into 表1 (列名1,列名2,列名3) select 列1,列2,列3 from ...

  3. .net常见框架

    从学习.NET以来,优雅的编程风格,极度简单的可扩展性,足够强大开发工具,极小的学习曲线,让我对这个平台产生了浓厚的兴趣,在工作和学习中也积累了一些开源的组件,就目前想到的先整理于此,如果再想到,就继 ...

  4. 『Numpy』常用方法记录

    numpy教程 防止输出省略号 import numpy as np np.set_printoptions(threshold=np.inf) 广播机制 numpy计算函数返回默认是一维行向量: i ...

  5. mysql导出导入数据库表

    1.下载数据库 mysqldump db_name  -h 192.168.5.162 -uroot -p > /var/www/db_name.sql(这个可以自定义) 2,下载数据库中的某个 ...

  6. hadoop mysql install (5)

    reference : http://dblab.xmu.edu.cn/blog/install-mysql/ http://wiki.ubuntu.org.cn/MySQL #install mys ...

  7. 快速切题 usaco ariprog

    题目:给定3<=n<=25,m<250,求m及以内的两两平方和能否构成为n的等差数列 1 WA 没有注意到应该按照公差-首项的顺序排序 2 MLE 尝试使用桶,但是实际上那可能是分散 ...

  8. oracleXE默认的管理员登录用户

    管理员: account:sys@XE as sysdba     pwd:sys sys@XE as sysdba             system

  9. String比较相等的问题探索

    String比较相等的问题探索 工作上,有个同事犯了个低级错误,把字符串的计较用了==.由于代码已经交付客户,上了生产环境,给公司带了了损失.于是看了他的代码,自己根据以前学的知识,写了几个小demo ...

  10. EhLib 的 DbgridEh 影响 其他数据集的Open方法

    DbgridEh 对应数据集ADOTable1,其中有个字段 部门编码,另外增加查找字段比如 部门名称 ADOTable2对应查找数据集,包含 部门编码和 部门名称字段. ADOTable1 打开后, ...