LINK


思路

首先在加入几个点之后所有的点都只有三种状态

一个是在独立集中,一个是和独立集联通,还有一个是没有被访问过

然后前两个状态是可以压缩起来的

因为我们只需要记录下当前独立集大小和是否被访问过,然后每次加点我们直接枚举加入独立集中的点然后周围联通的点都可以一起访问,只要保证当前枚举的点没有被访问过就可以了

因为这样选出来的当前的点一定是不是独立集中的且不和独立集联通的

然后每次因为加入了很多个点,我们设\(w_i\)表示和i联通(包括i)的所有点的集合

然后就可以用排列数算了,只需要保证当前选出来的加入独立集的点在所有其他点之前算就可以了

所以是\(dp_{i+1,s|w_{j}}+=dp_{i,s}*P_{n-cnt[s]-1}^{cnt[w_j\oplus(w_j\&s)]-1}\)


#include<bits/stdc++.h>

using namespace std;

const int Mod = 998244353;
const int N = 21; int n, m, w[N];
int fac[N], inv[N], cnt[1 << N];
int dp[N][1 << N]; int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
function<int(int a, int b)> add = [&](int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
}; function<int(int a, int b)> sub = [&](int a, int b) {
return (a -= b) < 0 ? a + Mod : a;
}; function<int(int a, int b)> mul = [&](int a, int b) {
return (long long) a * b % Mod;
}; function<int(int a, int b)> fast_pow = [&](int a, int b) {
int res = 1;
for (; b; b >>= 1, a = mul(a, a))
if (b & 1) res = mul(res, a);
return res;
}; function<int(int a, int b)> P = [&](int a, int b) {
return (a < b) ? 0 : mul(fac[a], inv[a - b]);
}; scanf("%d %d", &n, &m);
int up = (1 << n) - 1;
for (int i = 1; i <= n; i++) w[i] = 1 << (i - 1);
for (int i = 1; i <= m; i++) {
int u, v; scanf("%d %d", &u, &v);
w[u] |= 1 << (v - 1);
w[v] |= 1 << (u - 1);
}
inv[0] = fac[0] = 1;
for (int i = 1; i <= n; i++) fac[i] = mul(fac[i - 1], i);
inv[n] = fast_pow(fac[n], Mod - 2);
for (int i = n - 1; i >= 1; i--) inv[i] = mul(inv[i + 1], i + 1);
for (int i = 1; i <= up; i++) {
for (int j = 1; j <= n; j++) {
cnt[i] += (i >> (j - 1)) & 1;
}
}
dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int s = 0; s <= up; s++) if (dp[i - 1][s]) {
for (int j = 1; j <= n; j++) if (!((s >> (j - 1)) & 1)) {
dp[i][s | w[j]] = add(dp[i][s | w[j]], mul(dp[i - 1][s], P(n - cnt[s] - 1, cnt[w[j] ^ (w[j] & s)] - 1)));
}
}
}
for (int i = n; i >= 1; i--) if (dp[i][up]) {
printf("%d", mul(dp[i][up], inv[n]));
break;
}
return 0;
}

LOJ2540. 「PKUWC2018」随机算法【概率期望DP+状压DP】的更多相关文章

  1. loj2540 「PKUWC2018」随机算法 【状压dp】

    题目链接 loj2540 题解 有一个朴素三进制状压\(dp\),考虑当前点三种状态:没考虑过,被选入集合,被排除 就有了\(O(n3^{n})\)的转移 但这样不优,我们考虑优化状态 设\(f[i] ...

  2. LOJ2540「PKUWC2018」随机算法

    又是一道被咕了很久的题 貌似从WC2019之前咕到了现在 我们用f[i][s]表示现在最大独立集的大小为i 不可选集合为s 然后转移O(n)枚举加进来的点就比较简单啦 这个的复杂度是O(2^n*n^2 ...

  3. 【LOJ2540】「PKUWC2018」随机算法

    题意 题面 给一个 \(n\) 个点 \(m\) 条边的无向图.考虑如下求独立集的随机算法:随机一个排列并按顺序加点.如果当前点能加入独立集就加入,否则不加入.求该算法能求出最大独立集的概率. \(n ...

  4. 「PKUWC2018」随机算法

    题目 思博状压写不出是不是没救了呀 首先我们直接状压当前最大独立集的大小显然是不对的,因为我们的答案还和我们考虑的顺序有关 我们发现最大独立集的个数好像不是很多,可能是\(O(n)\)级别的,于是我们 ...

  5. 【LOJ】 #2540. 「PKUWC2018」随机算法

    题解 感觉极其神奇的状压dp \(dp[i][S]\)表示答案为i,然后不可选的点集为S 我们每次往答案里加一个点,然后方案数是,设原来可以选的点数是y,新加入一个点后导致了除了新加的点之外x个点不能 ...

  6. loj#2540. 「PKUWC2018」随机算法

    传送门 完了pkuwc咋全是dp怕是要爆零了-- 设\(f(S)\)表示\(S\)的排列数,\(S\)为不能再选的点集(也就是选到独立集里的点和与他们相邻的点),\(mx(S)\)表示\(S\)状态下 ...

  7. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  8. LOJ2542. 「PKUWC2018」随机游走

    LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...

  9. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

随机推荐

  1. steam

    1.steam 教育 Science(科学), Technology(技术), Engineering(工程), Arts(艺术), Maths(数学) 2.  steam 平台 Steam英文原译为 ...

  2. cocos2dx 3.13 simulator的问题

    下载新的cocos2dx 3.13,想使用simulator来运行lua项目,结果发现使用vs2013编译不通过. 1. 9>main.cpp(5): error C2146: 语法错误: 缺少 ...

  3. C#怎样用文件读写在文件的原有基础上追加一行数据

    首先添加命名空间using System.IO;这里有两种方法,希望对你有帮助,操作文件时,一定要记得及时关闭流. 第一种方法: string path="D\1.txt";//文 ...

  4. C语言的的free和c++的delete的区别

    首先free对应的是malloc:delete对应的是new:free用来释放malloc出来动态内存,delete用来释放new出来的动态内存空间. 应用的区别为: 1. 数组的时候int *p=( ...

  5. spring boot: GlobalDefaultExceptionHandler方法内的友好错误提示,全局异常捕获

    spring boot: GlobalDefaultExceptionHandler方法内的友好错误提示,全局异常捕获 当你的某个控制器内的某个方法报错,基本上回显示出java错误代码,非常不友好,这 ...

  6. Style、ControlTemplate 和 DataTemplate 触发器

    本文摘要:    1:属性触发器:    2:数据触发器:    3:事件触发器: Style.ControlTemplate 和 DataTemplate 都有触发器集合.    属性触发器只检查W ...

  7. week 1

    day1 订正 学习AC自动机 day2 mobius反演 对偶图 codeforces day3 ZR模拟赛 订正 day4 复习AC自动机 题库 https://www.cnblogs.com/c ...

  8. splay训练

    1, CF 455D 2, CF 420D 3, CF 414E

  9. windows下线程间的通信方式

    1.事件: (在信息交换函数中将控件的值与控件id进行绑定,这样我们就可以更新或者获取控件的值) void CMy0722ThreadTalkingDlg::DoDataExchange(CDataE ...

  10. POJ-3894 迷宫问题 (BFS+路径还原)

    定义一个二维数组: int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, ...