LOJ2540. 「PKUWC2018」随机算法【概率期望DP+状压DP】
思路
首先在加入几个点之后所有的点都只有三种状态
一个是在独立集中,一个是和独立集联通,还有一个是没有被访问过
然后前两个状态是可以压缩起来的
因为我们只需要记录下当前独立集大小和是否被访问过,然后每次加点我们直接枚举加入独立集中的点然后周围联通的点都可以一起访问,只要保证当前枚举的点没有被访问过就可以了
因为这样选出来的当前的点一定是不是独立集中的且不和独立集联通的
然后每次因为加入了很多个点,我们设\(w_i\)表示和i联通(包括i)的所有点的集合
然后就可以用排列数算了,只需要保证当前选出来的加入独立集的点在所有其他点之前算就可以了
所以是\(dp_{i+1,s|w_{j}}+=dp_{i,s}*P_{n-cnt[s]-1}^{cnt[w_j\oplus(w_j\&s)]-1}\)
#include<bits/stdc++.h>
using namespace std;
const int Mod = 998244353;
const int N = 21;
int n, m, w[N];
int fac[N], inv[N], cnt[1 << N];
int dp[N][1 << N];
int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
function<int(int a, int b)> add = [&](int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
};
function<int(int a, int b)> sub = [&](int a, int b) {
return (a -= b) < 0 ? a + Mod : a;
};
function<int(int a, int b)> mul = [&](int a, int b) {
return (long long) a * b % Mod;
};
function<int(int a, int b)> fast_pow = [&](int a, int b) {
int res = 1;
for (; b; b >>= 1, a = mul(a, a))
if (b & 1) res = mul(res, a);
return res;
};
function<int(int a, int b)> P = [&](int a, int b) {
return (a < b) ? 0 : mul(fac[a], inv[a - b]);
};
scanf("%d %d", &n, &m);
int up = (1 << n) - 1;
for (int i = 1; i <= n; i++) w[i] = 1 << (i - 1);
for (int i = 1; i <= m; i++) {
int u, v; scanf("%d %d", &u, &v);
w[u] |= 1 << (v - 1);
w[v] |= 1 << (u - 1);
}
inv[0] = fac[0] = 1;
for (int i = 1; i <= n; i++) fac[i] = mul(fac[i - 1], i);
inv[n] = fast_pow(fac[n], Mod - 2);
for (int i = n - 1; i >= 1; i--) inv[i] = mul(inv[i + 1], i + 1);
for (int i = 1; i <= up; i++) {
for (int j = 1; j <= n; j++) {
cnt[i] += (i >> (j - 1)) & 1;
}
}
dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int s = 0; s <= up; s++) if (dp[i - 1][s]) {
for (int j = 1; j <= n; j++) if (!((s >> (j - 1)) & 1)) {
dp[i][s | w[j]] = add(dp[i][s | w[j]], mul(dp[i - 1][s], P(n - cnt[s] - 1, cnt[w[j] ^ (w[j] & s)] - 1)));
}
}
}
for (int i = n; i >= 1; i--) if (dp[i][up]) {
printf("%d", mul(dp[i][up], inv[n]));
break;
}
return 0;
}
LOJ2540. 「PKUWC2018」随机算法【概率期望DP+状压DP】的更多相关文章
- loj2540 「PKUWC2018」随机算法 【状压dp】
题目链接 loj2540 题解 有一个朴素三进制状压\(dp\),考虑当前点三种状态:没考虑过,被选入集合,被排除 就有了\(O(n3^{n})\)的转移 但这样不优,我们考虑优化状态 设\(f[i] ...
- LOJ2540「PKUWC2018」随机算法
又是一道被咕了很久的题 貌似从WC2019之前咕到了现在 我们用f[i][s]表示现在最大独立集的大小为i 不可选集合为s 然后转移O(n)枚举加进来的点就比较简单啦 这个的复杂度是O(2^n*n^2 ...
- 【LOJ2540】「PKUWC2018」随机算法
题意 题面 给一个 \(n\) 个点 \(m\) 条边的无向图.考虑如下求独立集的随机算法:随机一个排列并按顺序加点.如果当前点能加入独立集就加入,否则不加入.求该算法能求出最大独立集的概率. \(n ...
- 「PKUWC2018」随机算法
题目 思博状压写不出是不是没救了呀 首先我们直接状压当前最大独立集的大小显然是不对的,因为我们的答案还和我们考虑的顺序有关 我们发现最大独立集的个数好像不是很多,可能是\(O(n)\)级别的,于是我们 ...
- 【LOJ】 #2540. 「PKUWC2018」随机算法
题解 感觉极其神奇的状压dp \(dp[i][S]\)表示答案为i,然后不可选的点集为S 我们每次往答案里加一个点,然后方案数是,设原来可以选的点数是y,新加入一个点后导致了除了新加的点之外x个点不能 ...
- loj#2540. 「PKUWC2018」随机算法
传送门 完了pkuwc咋全是dp怕是要爆零了-- 设\(f(S)\)表示\(S\)的排列数,\(S\)为不能再选的点集(也就是选到独立集里的点和与他们相邻的点),\(mx(S)\)表示\(S\)状态下 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- LOJ2542. 「PKUWC2018」随机游走
LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...
- 「PKUWC2018」随机游走(min-max容斥+FWT)
「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...
随机推荐
- 团队作业Beta冲刺-第三天
2018.06.26 各个成员完成任务 成员 今日完成任务 贡献小时数 龙正圆 后台程序完善 5h 杨环宇 后台程序完善 4h 马军.龚继恒 界面美化 2h 候燕.纪亚星 Beta冲刺博客的撰写 3h ...
- angular组件层次与军事指挥层级职责的联系
又继续读angular文档,发现自己之前理解还是有误.按官方文档的思路service不是属于component的,是属于module的.module才是负责完整领域逻辑的单位.demo的英雄编辑器给我 ...
- 【Golang】字符串首字母大小写转化
写在前面 在自动化过程中,我们用得最多的可能就是字符串的处理,熟悉Python的都知道在Python中要让一个字符串的首字母大写直接用capitalize就可以了,但是同样的事情在Golang中没有这 ...
- Java 常用对象-Scanner类
2017-11-02 16:33:11 Scanner类:一个可以使用正则表达式来解析基本类型和字符串的简单文本扫描器. Scanner 使用分隔符模式将其输入分解为标记,默认情况下该分隔符模式与空白 ...
- UEditor自动调节宽度
UEditor自动调节宽度 一.总结 一句话总结:ueditor是网页的产物,没有API我们照样可以像调网页元素那样调,一样的,这里是改变插件的css样式实现 启示: 百度 文档 引擎 ueditor ...
- English trip -- VC(情景课)9 A Get ready
She is doing homwork He is doing laundry He is drying the dishes She is making lunch She is making t ...
- Coconuts, Revisited(递推+枚举+模拟)
Description The short story titled Coconuts, by Ben Ames Williams, appeared in the Saturday Evening ...
- Android studio的 repositories配置多个url
buildscript { repositories { jcenter() } dependencies { classpath 'com.android.tools.build:gradle:2. ...
- java回收算法
两个最基本的java回收算法:复制算法和标记清理算法 复制算法:两个区域A和B,初始对象在A,继续存活的对象被转移到B.此为新生代最常用的算法 ...
- ps -ef |grep xxx 输出的具体含义
ps:将某个进程显示出来 -A 显示所有程序. -e 此参数的效果和指定"A"参数相同. -f 显示UID,PPIP,C与STIME栏位. grep命令是查找 中间的|是管道命令 ...