foo.c

#include <stdio.h>

void foo(void)
{
printf("foo.\n");
}

main.c

#include <stdio.h>

extern void foo(void);

int main(void)
{
foo();
printf("main.\n");
return ;
}

编译执行


$ gcc -dynamiclib foo.c -o libfoo.dylib
(-dynamiclib 表示将foo.c编译成一个动态库,
-o libfoo.dylib 用于指定生成的动态库的名称) $ gcc main.c -L. -lfoo -o main
(-L. 指定当前目录为链接时动态库的查找目录,
-lfoo 指定要链接的动态库为libfoo.dylib,
-o main 指定生成的可执行文件名称为main) $ ./main
foo.
main.
(在当前目录下执行main,注意要加上 ./)

两种引用


动态库的引用分为链接时引用与运行时引用两种情况。 -L. -lfoo 表示在链接时引用当前目录下的libfoo.dylib,
如果我们把libfoo.dylib移到上一层目录:
$ mv libfoo.dylib ..
这时再次链接:
$ gcc main.c -L. -lfoo -o main
ld: library not found for -lfoo
clang: error: linker command failed with exit code 1 (use -v to see invocation)
会提示出错,再将动态库移回:
$ mv ../libfoo.dylib .
再次链接:
$ gcc main.c -L. -lfoo -o main
执行成功。 在执行上述链接过程时,编译器顺便将动态库libfoo.dylib的install_name记录到了main程序中,
用来在运行时查找并引用该动态库,
查看动态库libfoo.dylib的install_name,运行:
$ otool -D libfoo.dylib
libfoo.dylib:
libfoo.dylib
显示出libfoo.dylib的install_name是libfoo.dylib,
查看一下main程序中记录的install_name是否与此一致:
$ otool -L main
main:
libfoo.dylib (compatibility version 0.0.0, current version 0.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1213.0.0)
第一条就是动态库libfoo.dylib对应的install_name,显然两者是一致的,main程序在运行时会根据记录的这些install_name在文件系统中查找所依赖的动态库。

关于install_name


(注意:只有动态库才有install_name,应用程序如果引用了某一个动态库,则会在链接时记录该动态库的install_name。) 在链接时,是可以为动态库指定一个install_name的:
$ gcc -dynamiclib foo.c -install_name aaa -o libfoo.dylib
将该动态库的install_name指定为aaa了,如不放心,可以查看一下:
$ otool -D libfoo.dylib
libfoo.dylib:
aaa
确实为aaa。(注意:如不指定,则会有一个缺省值,如libfoo.dylib) 重新编译main程序:
$ gcc main.c -L. -lfoo -o main
查看一下main程序中记录的install_name:
$ otool -L main
main:
aaa (compatibility version 0.0.0, current version 0.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1213.0.0)
果然是aaa。这时再次运行main程序:
$ ./main
dyld: Library not loaded: aaa
Referenced from: /private/tmp/dylib/./main
Reason: image not found
Trace/BPT trap: 5
出错了,提示找不到动态库aaa,这是因为main程序把aaa当成一个路径,而当前路径下确实没有叫aaa的动态库,
我们可以把libfoo.dylib改名为aaa:
$ mv libfoo.dylib aaa
再次运行:
$ ./main
foo.
main.
正常。

install_name_tool


顾名思义,install_name_tool就是用来操作install_name的工具,
它既可以改变动态库自身的install_name,也可以改变应用程序中记录的所引用动态库的install_name。 首先将动态库名称由aaa改为bbb:
$ mv aaa bbb
查看一下动态库的install_name:
$ otool -D bbb
bbb:
aaa
还是之前指定的aaa。
现在我们利用install_name_tool把动态库的install_name也改为bbb:
$ install_name_tool -id bbb bbb
(前一个bbb表示我们指定的install_name,后一个bbb表示动态库文件名)
查看一下修改之后的结果:
$ otool -D bbb
bbb:
bbb
果然改成了bbb。 这时再查看一下main程序中记录的install_name:
$ otool -L main
main:
aaa (compatibility version 0.0.0, current version 0.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1213.0.0)
还是之前的aaa,显然如果这时运行main程序还是会失败,因为当前路径下没有叫aaa的动态库文件,
下面我们就将main程序中记录的aaa改为bbb:
$ install_name_tool -change aaa bbb main
(aaa是旧的名称,bbb是新的名称,main表示要操作的文件名称)
查看一下结果:
$ otool -L main
main:
bbb (compatibility version 0.0.0, current version 0.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1213.0.0)
修改成功,这时再运行一下main程序:
$ ./main
foo.
main.
运行成功。 现在动态库bbb是和main程序在同一个目录,如果把bbb移到/tmp目录:
$ mv bbb /tmp
我们只需要将main程序中记录的bbb改为/tmp/bbb:
$ install_name_tool -change bbb /tmp/bbb main
查看一下结果:
$ otool -L main
main:
/tmp/bbb (compatibility version 0.0.0, current version 0.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1213.0.0)
这样也是可以运行的:
$ ./main
foo.
main. 相对路径也是可以的,现在把tmp目录下的bbb移到当前路径下的temp目录:
$ mkdir temp
$ mv /tmp/bbb temp/
我们只需要将main程序中记录的/tmp/bbb改为./temp/bbb:
$ install_name_tool -change /tmp/bbb ./temp/bbb main
查看一下结果:
$ otool -L main
main:
./temp/bbb (compatibility version 0.0.0, current version 0.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1213.0.0)
这样也是可以运行的:
$ ./main
foo.
main.

@executable_path/ @loader_path/ @rpath/


这三个path是用来表示路径的变量,它们可以用于install_name中,如:
@executable_path/../Frameworks/libAAA.dylib
@loader_path/libBBB.dylib
@rpath/libCCC.dylib
(注意:在使用这三个变量时,后面的“/”不能少。)

@executable_path/


.
├── Frameworks
│   ├── bar.c
│   └── foo.c
└── MacOS
└── main.c MacOS/main.c #include <stdio.h> extern void foo(void);
extern void bar(void); int main(void)
{
foo();
bar();
printf("main.\n");
return 0;
} Frameworks/foo.c #include <stdio.h> void foo(void)
{
printf("foo.\n");
} Frameworks/bar.c #include <stdio.h> void bar(void)
{
printf("bar.\n");
} 先把foo.c和bar.c做成动态库:
$ gcc foo.c -dynamiclib -install_name @executable_path/../Frameworks/libfoo.dylib -o libfoo.dylib
$ gcc bar.c -dynamiclib -install_name @executable_path/../Frameworks/libbar.dylib -o libbar.dylib 然后利用两个动态库编译main.c:
$ gcc main.c -L../Frameworks -lfoo -lbar -o main 查看一下main程序引用的动态库:
$ otool -L main
main:
@executable_path/../Frameworks/libfoo.dylib (compatibility version 0.0.0, current version 0.0.0)
@executable_path/../Frameworks/libbar.dylib (compatibility version 0.0.0, current version 0.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1213.0.0)
@executable_path/在运行时会替换成当前程序(也就是main程序)所在路径,
我们之前做的动态库文件libfoo.dylib、libbar.dylib正好存在于Frameworks目录下,所以该程序可以运行:
$ ./main
foo.
bar.
main.

@loader_path/


.
├── A
│   ├── B
│   │   └── bar.c
│   └── foo.c
└── main.c main.c #include <stdio.h> extern void foo(void); int main(void)
{
foo();
printf("main.\n");
return 0;
} A/foo.c #include <stdio.h> extern void bar(void); void foo(void)
{
bar();
printf("foo.\n");
} A/B/bar.c #include <stdio.h> void bar(void)
{
printf("bar.\n");
} 先将bar.c编译成动态库:
$ gcc bar.c -dynamiclib -install_name @loader_path/B/libbar.dylib -o libbar.dylib 再将foo.c编译成动态库(用到了libbar.dylib):
$ gcc foo.c -dynamiclib -LB -lbar -install_name @executable_path/A/libfoo.dylib -o libfoo.dylib 最后再编译main程序(用到了libfoo.dylib):
$ gcc main.c -LA -lfoo -o main 执行:
$ ./main
bar.
foo.
main. main程序依赖于libfoo.dylib,@executable_path/就是main程序的执行路径,
所以libfoo.dylib的install_name设置为@executable_path/A/libfoo.dylib正合适。 libfoo.dylib依赖于libbar.dylib,@loader_path/就是libfoo.dylib的加载路径,
所以libbar.dylib的install_name设置为@loader_path/B/libbar.dylib正合适。
(如果用@executable_path/,则可设置为@executable_path/A/B/libbar.dylib)

@rpath/


一个应用程序只有一个@executable_path/,可能有多个@loader_path/。
@executable_path/表示应用程序执行时路径,@loader_path/表示动态库(包括应用程序)加载时路径,
程序执行时,这两个路径由系统赋值。然而@rpath/则是由用户随意赋值,比前者更为灵活。 .
├── A
├── B
├── C
├── foo.c
└── main.c main.c #include <stdio.h> extern void foo(void); int main(void)
{
foo();
printf("main.\n");
return 0;
} foo.c #include <stdio.h> void foo(void)
{
printf("foo.\n");
} 首先编译动态库,把@rpath/加入到install_name中:
$ gcc foo.c -dynamiclib -install_name @rpath/libfoo.dylib -o libfoo.dylib 然后编译应用程序,并添加自定义rpath
$ gcc main.c -L. -lfoo -Wl,-rpath,@loader_path/A/ -Wl,-rpath,@loader_path/B/ -Wl,-rpath,@loader_path/C/ -o main 我们可以用命令查看一下这三个rpath:
$ otool -l main | grep path
name @rpath/libfoo.dylib (offset 24)
path @loader_path/A/ (offset 12)
path @loader_path/B/ (offset 12)
path @loader_path/C/ (offset 12)
第一行name表示main程序记录的动态库的install_name,后面三个path组成了rpath列表,
运行时@rpath/就被依次替换成了@loader_path/A/ 、@loader_path/B/ 、 @loader_path/C/,
@loader_path/又最终被替换成了动态库(或应用程序)的加载路径。 将libfoo.dylib分别移动到A、B、C三个目录,测试main程序是否可以正常运行:
$ mv libfoo.dylib A/
$ ./main
foo.
main.
$ mv A/libfoo.dylib B/
$ ./main
foo.
main.
$ mv B/libfoo.dylib C/
$ ./main
foo.
main.

Edit By MaHua

OS X 下动态库的引用的更多相关文章

  1. c++动态库封装及调用(2、windows下动态库创建)

    DLL即动态链接库(Dynamic-Link Libaray)的缩写,相当于Linux下的共享对象.Windows系统中大量采用了DLL机制,甚至内核的结构很大程度依赖与DLL机制.Windows下的 ...

  2. Linux下动态库查找路径的问题

    说到和动态库查找路径相关的问题,总体上可以分为两类:    第一类: 通过源代码编译程序时出现的找不到某个依赖包的问题,而如果此时你恰好已经按照它的要求确确实实.千真万确.天地良心地把依赖库给装好了, ...

  3. 谈谈Linux下动态库查找路径的问题 ldconfig LD_LIBRARY_PATH PKG_CONFIG_PATH

    谈谈Linux下动态库查找路径的问题 ldconfig LD_LIBRARY_PATH  PKG_CONFIG_PATH 转载自:http://blog.chinaunix.net/xmlrpc.ph ...

  4. 谈谈Linux下动态库查找路径的问题

    学习到了一个阶段之后,就需要不断的总结.沉淀.清零,然后才能继续"上路".回想起自己当年刚接触Linux时,不管是用源码包编译程序,还是程序运行时出现的和动态库的各种恩恩怨怨,心里 ...

  5. Linux下动态库生成和使用

    Linux下动态库生成和使用 一.动态库的基本概念 1.动态链接库是程序运行时加载的库,当动态链接库正确安装后,所有的程序都可以使用动态库来运行程序.动态链接库是目标文件的集合,目标文件在动态链接库中 ...

  6. Windows下动态库的编译以及调用

    1.MFC下生成动态库 1>显式调用 在.cpp文件里添加接口函数 int sum(int a,int b) { return a + b; } int sub(int a,int b) { r ...

  7. [转]谈谈Linux下动态库查找路径的问题

    http://blog.chinaunix.net/uid-23069658-id-4028681.html 学习到了一个阶段之后,就需要不断的总结.沉淀.清零,然后才能继续“上路”.回想起自己当年刚 ...

  8. 深入理解LINUX下动态库链接器/加载器ld-linux.so.2

    [ld-linux-x86-64.so.2] 最近在Linux 环境下开发,搞了好几天 Compiler 和 linker,觉得有必要来写一篇关于Linux环境下 ld.so的文章了,google上搜 ...

  9. 转:谈谈Linux下动态库查找路径的问题

    http://blog.chinaunix.net/uid-23069658-id-4028681.html 学习到了一个阶段之后,就需要不断的总结.沉淀.清零,然后才能继续“上路”.回想起自己当年刚 ...

随机推荐

  1. AD PCB中两个不同高度器件重叠 软件报警告变绿

    这个问题遇到几次了,每次都要在网上搜索解决方法,今天记下来! 在规则里面不检查器件高度这项应该是最简单,也不影响其他规则的方法了! 具体操作: Design - rules - Component C ...

  2. HP P2xxx/MSA SMI-S Provider

    HP P2xxx/MSA SMI-S Provider The HP MSA provider must be enabled before it can be monitored. For more ...

  3. R序列seq

    > seq(from=10,to=20,by=3) [1] 10 13 16 19 > seq(from=10,to=20,length=5) [1] 10.0 12.5 15.0 17. ...

  4. Elasticsearch-mapper 基于注解方式生成mapping(2.0以上)

    Elasticsearch生成mapping的方式上有多种方式,我们可以把mapping做成配置文件,也可以用spring-data-elasticsearch基于注解生成. 在基于注解生成这种方式上 ...

  5. iOS ViewControllers 瘦身

    https://objccn.io/issue-1-1/ https://juejin.im/user/57ddfba4128fe10064cbb93a 把 Data Source 和其他 Proto ...

  6. CodeForces - 779D String Game 常规二分

    题意:给你两个串,S2是S1 的一个子串(可以不连续).给你一个s1字符下标的一个排列,按照这个数列删数,问你最多删到第几个时S2仍是S1 的一个子串. 题解:二分删掉的数.判定函数很好写和单调性也可 ...

  7. 2018/03/29 每日一个Linux命令 之 ping

    ping 用于测试两及其网络是否通 主要用于检测网络是否通畅. -- 具体语法 ping [-dfnqrRv][-c<完成次数>][-i<间隔秒数>][-I<网络界面&g ...

  8. 2018/03/16 每日一个Linux命令 之 rm

    最痛快的指令,没有之一. 一次永久删除,恢复很麻烦. 我会告诉你我第一次上服务器的时候删除了项目代码?(还好我提前备份了一下) -- rm [-参数][文件或者文件夹/支持正则通配] 参数: -i 删 ...

  9. River Crossing---河南省第六届大学生程序设计竞赛

    题目描述 Afandi is herding N sheep across the expanses of grassland  when he finds himself blocked by a ...

  10. usb设备运行不正常的解决方法(转)

    add by zhj:上午鼠标还用的好好的,下午就不能用了,插上之后提示“跟这台计算机连接的一个usb设备运行不正常”,尼玛,什么情况?我今天没安装软件啊,换了个USB接口也不行,在另一台电脑上试还是 ...