python. pandas(series,dataframe,index) method test
python. pandas(series,dataframe,index,reindex,csv file read and write) method test
import pandas as pd
import numpy as np
def testpandas():
p = pd.Series([1,2,3,4,5],index =('a','b','c','d','e'))
print(p) cities = {'bejing':5500,'shanghai':5999,'shezhen':6000,'suzhou':None}
p2 = pd.Series(cities,name ='prices')
print(p2[:-1])
print('bejing' in p2)
print(p2.get('bejing'))
print(p2[p2 < 6000])
print(p.mean())
s = pd.Series(np.random.randn(5),index =[1,2,3,4,5])
print(np.random.randn(5)) le = p2 < 5600
print(le)
print(p2[le])
print('---------------------------')
p2['bejing']=7000
print(p2/2)
print(np.log(p2))
print('---------------------------')
com=p + p2
print(com)
print('---------------------------') data={'city':['bj','shenzhen','shanhai'],
'year':[2011,2013,2014],
'pop':[2100,2200,2430]}
df = pd.DataFrame(data,columns=['year','city','pop'],index=['one','two','three'])
print(df)
print('---------------------------')
df2=pd.DataFrame({'city':p2,'p1':p})
print(df2)
print('---------------------------') data2=[{'july':9999,'han':5000,'zewei':1000},{'july':9999,'han':5000,'zewei':1000},{'july':9999,'han':5000,'zewe2i':1000}]
df3=pd.DataFrame(data2)
print(df3)
print(df3.loc[[1,2]])
print(df3['han'])
print('---------------------------')
print(df3.iloc[0:2])
print('---------------------------')
df3.loc[1]=9000
df3['han']=9000
print(df3)
print(df3.shape[1])
print(df3.columns)
print('---------------------------')
print(df3.info())
df3.index.name='city'
df3.columns.name='info'
print('---------------------------')
print(df3)
row =df3.loc[0]
print(row) print(df3.sub(row,axis=1))
print('---------------------------')
col=df3['july']
print(col)
print(df3.sub(col,axis=0))
print('---------------------------')
index=pd.Index(['shanghai','guangzhou','shenzheng'])
print(index)
obj = pd.Series(range(3),index=['a','b','c'])
obj_index=obj.index
print(obj_index[1:]) print(df3.drop([0,1]))
print(df3) print(df3)
#read and write csv of pandas
goog =pd.read_csv(r'C:\python\demo\LiaoXueFeng\data\test_vrt.csv',index_col=0)
goog=goog.reindex(pd.to_datetime(goog.index))
print(goog.head())
print(goog.tail())
data2 = [{'july': 9999, 'han': 5000, 'zewei': 1000}, {'july': 9999, 'han': 5000, 'zewei': 1000},
{'july': 9999, 'han': 5000, 'zewe2i': 1000}]
df3 = pd.DataFrame(data2)
df3.to_csv(r'C:\python\demo\LiaoXueFeng\data\goog2.csv',encoding='GBK',mode='a')
python. pandas(series,dataframe,index) method test的更多相关文章
- python pandas.Series&&DataFrame&& set_index&reset_index
参考CookBook :http://pandas.pydata.org/pandas-docs/stable/cookbook.html Pandas set_index&reset_ind ...
- python pandas ---Series,DataFrame 创建方法,操作运算操作(赋值,sort,get,del,pop,insert,+,-,*,/)
pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包 pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的, 导入如下: from panda ...
- Python Pandas -- Series
pandas.Series class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath ...
- python基础:如何使用python pandas将DataFrame转换为dict
之前在知乎上看到有网友提问,如何将DataFrame转换为dict,专门研究了一下,pandas在0.21.0版本中是提供了这个方法的.下面一起学习一下,通过调用help方法,该方法只需传入一个参数, ...
- Pandas数据结构(一)——Pandas Series
Pandas 是 Python 中基于Numpy构建的数据操纵和分析软件包,包含使数据分析工作变得快速简洁的高级数据结构和操作工具.通过Pandas Series 和 Pandas DataFrame ...
- pandas.Series
1.系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组.轴标签统称为索引. Pandas系列可以使用以下构造函数创建 - pandas.Series ...
- pandas数据结构:Series/DataFrame;python函数:range/arange
1. Series Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index). 1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会 ...
- 利用Python进行数据分析:【Pandas】(Series+DataFrame)
一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的.3.pandas的主要功能 --具备对其功能的数据结构DataFrame.S ...
- Pandas 之 Series / DataFrame 初识
import numpy as np import pandas as pd Pandas will be a major tool of interest throughout(贯穿) much o ...
随机推荐
- controller.tabBarItem.title = @"11111"不显示
场景: 在xcode8.3下 今天在弄工程的时候,发现把之前工程中的tabbar控制器拿过来后,在控制器里面用 controller.tabBarItem.title = @"11111& ...
- [Android] 使用Include布局+Fragment滑动切换屏幕
前面的文章已经讲述了"随手拍"项目图像处理的技术部分,该篇文章主要是主界面的布局及屏幕滑动切换,并结合鸿洋大神的视频和郭神的第一行代码(强推两人Android博客),完毕了 ...
- SQL 给字符串补0
第一种方法: right('00000'+cast(@count as varchar),5) 其中'00000'的个数为right函数的最后参数,例如这里是5,所以有5个0 @count就是被格式化 ...
- Android Developers:向其它应用发送用户
Android的一个非常重要的功能是,应用程序基于它要执行的一个“动作”想其它应用程序发送用户的能力.例如,如果你的应用程序要显示一个地图,你没有在你的应用程序中创建显示地图的Activity.相反, ...
- XGB 调参基本方法
- xgboost 基本方法和默认参数 - 实战经验中调参方法 - 基于实例具体分析 在训练过程中主要用到两个方法:xgboost.train()和xgboost.cv(). xgboost.trai ...
- Google Guava中的前置条件
前置条件:让方法调用的前置条件判断更简单. Guava在Preconditions类中提供了若干前置条件判断的实用方法,我们建议[在Eclipse中静态导入这些方法]每个方法都有三个变种: check ...
- jmeter Best Practices
性能测试最佳实践之JMeter 16. Best Practices 16.1 Always use latest version of JMeter The performance of JMete ...
- 7 款顶级的开源 Web 分析软件
Web 分析无非就是 Web 流量的测量.但它并不限于测量网络流量,还包括: 分析 数据采集 为了了解和优化网页而上报网络数据 Google Analytics是最广泛使用的基于云的网络分析服务.不过 ...
- InlineModelAdmin对象的学习
一.InlineModelAdmin的介绍 管理界面可以在与父模型相同的页面上编辑模型.这些被称为内联. Django提供了两个子类,InlineModelAdmin它们是: TabularInlin ...
- zookeeper 的日常管理
http://www.cnblogs.com/ggjucheng/p/3352591.html