python. pandas(series,dataframe,index,reindex,csv file read and write) method test
import pandas as pd
import numpy as np
def testpandas():
p = pd.Series([1,2,3,4,5],index =('a','b','c','d','e'))
print(p) cities = {'bejing':5500,'shanghai':5999,'shezhen':6000,'suzhou':None}
p2 = pd.Series(cities,name ='prices')
print(p2[:-1])
print('bejing' in p2)
print(p2.get('bejing'))
print(p2[p2 < 6000])
print(p.mean())
s = pd.Series(np.random.randn(5),index =[1,2,3,4,5])
print(np.random.randn(5)) le = p2 < 5600
print(le)
print(p2[le])
print('---------------------------')
p2['bejing']=7000
print(p2/2)
print(np.log(p2))
print('---------------------------')
com=p + p2
print(com)
print('---------------------------') data={'city':['bj','shenzhen','shanhai'],
'year':[2011,2013,2014],
'pop':[2100,2200,2430]}
df = pd.DataFrame(data,columns=['year','city','pop'],index=['one','two','three'])
print(df)
print('---------------------------')
df2=pd.DataFrame({'city':p2,'p1':p})
print(df2)
print('---------------------------') data2=[{'july':9999,'han':5000,'zewei':1000},{'july':9999,'han':5000,'zewei':1000},{'july':9999,'han':5000,'zewe2i':1000}]
df3=pd.DataFrame(data2)
print(df3)
print(df3.loc[[1,2]])
print(df3['han'])
print('---------------------------')
print(df3.iloc[0:2])
print('---------------------------')
df3.loc[1]=9000
df3['han']=9000
print(df3)
print(df3.shape[1])
print(df3.columns)
print('---------------------------')
print(df3.info())
df3.index.name='city'
df3.columns.name='info'
print('---------------------------')
print(df3)
row =df3.loc[0]
print(row) print(df3.sub(row,axis=1))
print('---------------------------')
col=df3['july']
print(col)
print(df3.sub(col,axis=0))
print('---------------------------')
index=pd.Index(['shanghai','guangzhou','shenzheng'])
print(index)
obj = pd.Series(range(3),index=['a','b','c'])
obj_index=obj.index
print(obj_index[1:]) print(df3.drop([0,1]))
print(df3) print(df3)

#read and write csv of pandas
goog =pd.read_csv(r'C:\python\demo\LiaoXueFeng\data\test_vrt.csv',index_col=0)
goog=goog.reindex(pd.to_datetime(goog.index))
print(goog.head())
print(goog.tail())
data2 = [{'july': 9999, 'han': 5000, 'zewei': 1000}, {'july': 9999, 'han': 5000, 'zewei': 1000},
{'july': 9999, 'han': 5000, 'zewe2i': 1000}]
df3 = pd.DataFrame(data2)
df3.to_csv(r'C:\python\demo\LiaoXueFeng\data\goog2.csv',encoding='GBK',mode='a')

python. pandas(series,dataframe,index) method test的更多相关文章

  1. python pandas.Series&&DataFrame&& set_index&reset_index

    参考CookBook :http://pandas.pydata.org/pandas-docs/stable/cookbook.html Pandas set_index&reset_ind ...

  2. python pandas ---Series,DataFrame 创建方法,操作运算操作(赋值,sort,get,del,pop,insert,+,-,*,/)

    pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包 pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的, 导入如下: from panda ...

  3. Python Pandas -- Series

    pandas.Series class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath ...

  4. python基础:如何使用python pandas将DataFrame转换为dict

    之前在知乎上看到有网友提问,如何将DataFrame转换为dict,专门研究了一下,pandas在0.21.0版本中是提供了这个方法的.下面一起学习一下,通过调用help方法,该方法只需传入一个参数, ...

  5. Pandas数据结构(一)——Pandas Series

    Pandas 是 Python 中基于Numpy构建的数据操纵和分析软件包,包含使数据分析工作变得快速简洁的高级数据结构和操作工具.通过Pandas Series 和 Pandas DataFrame ...

  6. pandas.Series

    1.系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组.轴标签统称为索引. Pandas系列可以使用以下构造函数创建 - pandas.Series ...

  7. pandas数据结构:Series/DataFrame;python函数:range/arange

    1. Series Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index). 1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会 ...

  8. 利用Python进行数据分析:【Pandas】(Series+DataFrame)

    一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的.3.pandas的主要功能 --具备对其功能的数据结构DataFrame.S ...

  9. Pandas 之 Series / DataFrame 初识

    import numpy as np import pandas as pd Pandas will be a major tool of interest throughout(贯穿) much o ...

随机推荐

  1. 【jsp】配置错误页面

    1,使用JSP方式 如果配置是Jsp时,需要把isErrorPage设置为true, 以及设置 <%@ page language="Java" contentType=&q ...

  2. Mac添加快捷键开启应用程序(转)

    最近使用终端比较多点,打开终端的方法有几种:比较常用有把终端添加到Dock栏上,然后就是利用Spotlight搜索Terminal来打开.但是两种方式还是让我感觉不太满意. 当开启的程序比较多的时候, ...

  3. spark.mllib源代码阅读-优化算法1-Gradient

    Spark中定义的损失函数及梯度,在看源代码之前,先回想一下机器学习中定义了哪些损失函数,毕竟梯度求解是为优化求解损失函数服务的. 监督学习问题是在如果空间F中选取模型f作为决策函数.对于给定的输入X ...

  4. 测试rp文件

    正文: 测试我的博客,我的资源在github上! 地址:https://github.com/gmqllf/tx-lcn

  5. hashCode方法

    hashCode方法: 当覆写(override)了equals()方法之后,必须也覆写hashCode()方法,反之亦然.这个方法返回一个整型值(hash code value),如果两个对象被eq ...

  6. 在Spring Boot中使用Spring-data-jpa实现分页查询(转)

    在我们平时的工作中,查询列表在我们的系统中基本随处可见,那么我们如何使用jpa进行多条件查询以及查询列表分页呢?下面我将介绍两种多条件查询方式. 1.引入起步依赖  2.对thymeleaf和jpa进 ...

  7. java后台list集合传值到前台,再取值的几种方法

    1.在jsp页面中嵌套 java代码: 首先jsp页面中导入java的工具类 <%@ page language="java" import="java.util. ...

  8. FIR调用DSP48E_05

    作者:桂. 时间:2018-02-06  17:52:38 链接:http://www.cnblogs.com/xingshansi/p/8423457.html 前言 到目前为止,本文没有对滤波器实 ...

  9. grub配置指南

    GRUB(统一引导装入器)是基本的Linux引导装入器.其有四个作用,如下:1.选择操作系统(如果计算机上安装了多个操作系统).2.表示相应引导文件所在的分区.3.找到内核.4.运行初始内存盘,设置内 ...

  10. LeetCode Permutaions II

    LeetCode解题之Permutaions II 原题 输出一个有反复数字的数组的全排列. 注意点: 反复数字的可能导致反复的排列 样例: 输入: nums = [1, 2, 1] 输出: [[1, ...