『PyTorch』第五弹_深入理解Tensor对象_上:初始化以及尺寸调整
一、创建Tensor
特殊方法:
t.arange(1,6,2)
t.linspace(1,10,3)
t.randn(2,3) # 标准分布,*size
t.randperm(5) # 随机排序,从0到n
t.normal(means=t.arange(0, 11), std=t.arange(1, 0, -0.1))
概览:
"""创建空Tensor"""
a = t.Tensor(2, 3)
# 创建和b大小一致的Tensor
c = t.Tensor(a.size())
print(a,c) # 数值取决于内存空间状态
-9.6609e+30 7.9594e-43 -4.1334e+27
7.9594e-43 -4.1170e+27 7.9594e-43
[torch.FloatTensor of size 2x3] -9.6412e+30 7.9594e-43 -9.6150e+30
7.9594e-43 -4.1170e+27 7.9594e-43
[torch.FloatTensor of size 2x3]
"""由list/tuple创建Tensor"""
b = t.Tensor([[1,2,3],[4,5,6]])
print(b) # 根据list初始化Tensor print(b.tolist())
print(b) # 并非inplace转换
1 2 3
4 5 6
[torch.FloatTensor of size 2x3] [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]] 1 2 3
4 5 6
[torch.FloatTensor of size 2x3]
# 等价写法,查看元素个数(2*3=6)
print(b.numel())
print(b.nelement())
6
6
# 传入tuple等价于传入list
d = t.Tensor((2,3))
print(d)
2
3
[torch.FloatTensor of size 2]
"""创建特定Tensor"""
print(t.eye(2,3))
print(t.ones(2,3))
print(t.zeros(2,3))
print(t.arange(1,6,2))
print(t.linspace(1,10,3))
# 几个特殊初始化方法
print(t.randn(2,3)) # 标准分布,*size
print(t.randperm(5)) # 随机排序,从0到n
print(t.normal(means=t.arange(0, 11), std=t.arange(1, 0, -0.1)))
1 0 0
0 1 0
[torch.FloatTensor of size 2x3] 1 1 1
1 1 1
[torch.FloatTensor of size 2x3] 0 0 0
0 0 0
[torch.FloatTensor of size 2x3] 1
3
5
[torch.FloatTensor of size 3] 1.0000
5.5000
10.0000
[torch.FloatTensor of size 3] -0.9959 -0.8446 0.7241
3.0315 -0.5367 1.0722
[torch.FloatTensor of size 2x3] 4
3
2
1
0
[torch.LongTensor of size 5] -0.5880
1.2708
1.5530
3.2490
4.7693
4.9497
6.0663
6.1482
7.9109
8.9492
10.0000
[torch.FloatTensor of size 11]
二、尺度调整
特殊方法:
a.view(-1,3)
b.unsqueeze_(0)
b.resize_(3,3)
概览:
a = t.arange(0,6)
print(a.view(2,3)) # 非inplace
print(a.view(-1,3)) # -1为自动计算大小
0 1 2
3 4 5
[torch.FloatTensor of size 2x3] 0 1 2
3 4 5
[torch.FloatTensor of size 2x3]
b = a.view(-1,3)
b.unsqueeze_(0)
print(b)
print(b.size())
(0 ,.,.) =
0 1 2
3 4 5
[torch.FloatTensor of size 1x2x3] torch.Size([1, 2, 3])
c = b.view(1,1,1,2,3)
print(c.squeeze_(0)) # 压缩第0个1
print(c.squeeze_()) # 压缩全部的1
(0 ,0 ,.,.) =
0 1 2
3 4 5
[torch.FloatTensor of size 1x1x2x3] 0 1 2
3 4 5
[torch.FloatTensor of size 2x3]
# view要求前后元素数相同,resize_没有这个要求
# resize_没有对应的非inplace操作版本
print(b.resize_(1,3))
print(b.resize_(3,3))
print(b)
0 1 2
[torch.FloatTensor of size 1x3] 0.0000e+00 1.0000e+00 2.0000e+00
3.0000e+00 4.0000e+00 5.0000e+00
3.3845e+15 0.0000e+00 0.0000e+00
[torch.FloatTensor of size 3x3] 0.0000e+00 1.0000e+00 2.0000e+00
3.0000e+00 4.0000e+00 5.0000e+00
3.3845e+15 0.0000e+00 0.0000e+00
[torch.FloatTensor of size 3x3]
『PyTorch』第五弹_深入理解Tensor对象_上:初始化以及尺寸调整的更多相关文章
- 『PyTorch』第五弹_深入理解autograd_上:Variable属性方法
在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创 ...
- 『PyTorch』第五弹_深入理解autograd_下:函数扩展&高阶导数
一.封装新的PyTorch函数 继承Function类 forward:输入Variable->中间计算Tensor->输出Variable backward:均使用Variable 线性 ...
- 『PyTorch』第五弹_深入理解autograd_中:Variable梯度探究
查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和ho ...
- 『PyTorch』第五弹_深入理解Tensor对象_中下:数学计算以及numpy比较_&_广播原理简介
一.简单数学操作 1.逐元素操作 t.clamp(a,min=2,max=4)近似于tf.clip_by_value(A, min, max),修剪值域. a = t.arange(0,6).view ...
- 『PyTorch』第五弹_深入理解Tensor对象_下:从内存看Tensor
Tensor存储结构如下, 如图所示,实际上很可能多个信息区对应于同一个存储区,也就是上一节我们说到的,初始化或者普通索引时经常会有这种情况. 一.几种共享内存的情况 view a = t.arang ...
- 『PyTorch』第五弹_深入理解Tensor对象_中上:索引
一.普通索引 示例 a = t.Tensor(4,5) print(a) print(a[0:1,:2]) print(a[0,:2]) # 注意和前一种索引出来的值相同,shape不同 print( ...
- 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...
- 『PyTorch』第三弹重置_Variable对象
『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data ...
- 『PyTorch』第十弹_循环神经网络
RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础R ...
随机推荐
- centos7 centos-home 磁盘转移至centos-root下
1.查看分区 df -h (centos-home和centos-root每人的名字可能不一样) vgdisplay (查看空闲磁盘大小) 2.备份home分区文件 tar cvf /tmp/home ...
- jquery easyUI中combobox的使用总结
jquery easyUI中combobox的使用总结 一.如何让jquery-easyui的combobox像select那样不可编辑?为combobox添加editable属性 设置为false ...
- linux服务器管理员的12个有用的命令
ifconfig: 在修改内核中已有的网络接口时,你会用到ifconfig命令.这个命令通常用于系统调校和调试,但同时也可以用于在启动过程中设置接口. netstat: 对于Linux用户来说这是一个 ...
- Ubuntu系统下查看显卡相关信息
查看显卡信息 root@ubuntu:/home/ubuntu# lspci |grep -i vga 02:00.0 VGA compatible controller: NVIDIA Corpor ...
- (四)github之Git的初始设置
设置姓名与邮箱地址 这里的姓名和邮箱地址会用在git的提交日志之中,在github上公开git仓库时会随着提交日志一起公开. 有两种方式, 第一种,在git bash下设置 第二种, 通过直接编辑.g ...
- curl 7.52.1 for Windows
curl是利用URL语法在命令行方式下工作的开源文件传输工具.它被广泛应用在Unix.多种Linux发行版中,并且有DOS和Win32.Win64下的移植版本. 这个工具对于在运维.持续集成和批处理场 ...
- JavaScript 实现省市二级联动
JavaScript 实现省市二级联动 版权声明:未经授权,严禁转载! 案例代码 <style> .hide { display: none; } </style> <s ...
- JavaScript 获取和修改 内联样式
JavaScript 获取和修改 内联样式 版权声明:未经授权,严禁转载分享! 元素的样式 HTML 元素的 style 属性返回一个 CSSStyleDeclaration 类型的对象. Style ...
- ”MySQL索引“学习总结
序 learn by doing 是最快的学习方式.在百度外卖研发中心,我每天工作接触数据库方面最多的就是"索引",另外面试官在面试时也一定会考察到索引. Part 1, Expl ...
- 20145206邹京儒MSF基础应用
20145206邹京儒MSF基础应用 一.MS08_067漏洞渗透攻击实践 实验前准备 1.两台虚拟机,其中一台为kali,一台为windows xp sp3(英文版). 2.在VMware中设置两台 ...