codefroces 450B矩阵快速幂
找出递推关系式就好了
(fi+1)=(1 -1)(fi )
( fi)=(1 0)(fi-1)
不会打矩阵将就着看吧。。。
这是第一道矩阵快速幂。细节还是有很多没注意到的
本来想看挑战写的,结果上面的vector套vector看的我头都晕了。。
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1 using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=<<+,inf=0x3f3f3f3f; struct Node{
ll row,col;
ll a[N][N];
};
Node mul(Node x,Node y)
{
Node ans;
memset(ans.a,,sizeof ans.a);
ans.row=x.row,ans.col=y.col;
for(ll i=;i<x.row;i++)
for(ll j=;j<y.row;j++)
for(ll k=;k<y.col;k++)
ans.a[i][k]=(ans.a[i][k]+x.a[i][j]*y.a[j][k]+mod)%mod;
return ans;
}
Node quick_mul(Node x,ll n)
{
Node ans;
ans.row=x.row;
ans.col=x.col;
memset(ans.a,,sizeof ans.a);
for(int i=;i<ans.row;i++)ans.a[i][i]=;
while(n){
if(n&)ans=mul(ans,x);
x=mul(x,x);
n/=;
}
return ans;
}
int main()
{ ios::sync_with_stdio(false);
cin.tie();
// cout<<setiosflags(ios::fixed)<<setprecision(2);
int x,y,n;
cin>>x>>y>>n;
if(n==)
{
cout<<(x+mod)%mod<<endl;
return ;
}
Node A,B;
A.row=,A.col=;
A.a[][]=,A.a[][]=-;
A.a[][]=,A.a[][]=;
/* for(int i=0;i<A.row;i++)
{
for(int j=0;j<A.col;j++)
cout<<A.a[i][j]<<" ";
cout<<endl;
}*/
B.row=,B.col=;
B.a[][]=y,B.a[][]=x;
cout<<(mul(quick_mul(A,n-),B).a[][]+mod)%mod<<endl;
return ;
}
codefroces 450B矩阵快速幂的更多相关文章
- cf 450b 矩阵快速幂(数论取模 一大坑点啊)
Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...
- CodeForces 450B Jzzhu and Sequences(矩阵快速幂)题解
思路: 之前那篇完全没想清楚,给删了,下午一上班突然想明白了. 讲一下这道题的大概思路,应该就明白矩阵快速幂是怎么回事了. 我们首先可以推导出 学过矩阵的都应该看得懂,我们把它简写成T*A(n-1)= ...
- Codeforces 450B div.2 Jzzhu and Sequences 矩阵快速幂or规律
Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...
- codeforces 450B B. Jzzhu and Sequences(矩阵快速幂)
题目链接: B. Jzzhu and Sequences time limit per test 1 second memory limit per test 256 megabytes input ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- HDU5950(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...
随机推荐
- nginx 总结
本文转自:http://freeloda.blog.51cto.com/2033581/1288553 ,感谢大神的辛勤付出! 大纲 一.前言 二.环境准备 三.安装与配置Nginx 四.Nginx之 ...
- Linux基础命令---ziinfo
zipinfo 在不解压的情况下,获取zip压缩文件的的详细信息.zipinfo列出了ZIP档案中有关文件的技术信息,最常见的是在MS-DOS系统上.这些信息包括文件访问权限.加密状态.压缩类型.版本 ...
- php header utf8 插入header("Content-type: text/html; charset=utf-8");
PHP文件插入header("Content-type: text/html; charset=utf-8"); 相当于页面里面的<meta http-equiv=" ...
- web前端----JavaScript对象
简介: 在JavaScript中除了null和undefined以外其他的数据类型都被定义成了对象,也可以用创建对象的方法定义变量,String.Math.Array.Date.RegExp都是Jav ...
- 笔试题二(java面向对象、多线程、集合)
1.final关键字的特点 final修饰变量时,在堆内存中的地址是不变的,但对象的内容是可变的.//思考,找例子 2.静态变量的特点 实例变量是用对象引用,要先实例化对象,而静态变量属于类,只要类加 ...
- POJ 2348 Euclid's Game(博弈)题解
题意:有a,b两个数字,两人轮流操作,每次可以选择两个之中较小的数字,然后另一个数字减去选择数字的任意倍数(不能减到负数),直到其中一个为0,不能操作为败 思路:这题用博弈NP思想,必败点和必胜点之间 ...
- POJ 2373 Dividing the Path (单调队列优化DP)题解
思路: 设dp[i]为覆盖i所用的最小数量,那么dp[i] = min(dp[k] + 1),其中i - 2b <= k <= i -2a,所以可以手动开一个单调递增的队列,队首元素就是k ...
- 【分布式计算】30分钟概览Spark分布式计算引擎
本文主要帮助初学者快速了解Spark,不会面面俱到,但核心一定点到. Spark是继Hadoop之后的下一代分布式内存计算引擎,于2009年诞生于加州大学伯克利分校AMPLab实验室,现在主要由Dat ...
- 4、CommonChunkPlugin提取公共js-提取多个
cnpm install css-loader --save-dev //css-loader 是将css打包进js cnpm install style-loader --save-dev ...
- MOOC_Java进阶_翁恺讲_第三周题
package mooc_java进阶_d3周题; /** * 没有使用HashMap */ import java.util.ArrayList; import java.util.Scanner; ...