一、ROW_NUMBER()的用法

语法:ROW_NUMBER() OVER(PARTITION BY COLUMN ORDER BY COLUMN)

row_number()从1开始,为每一条分组记录返回一个数字,这里的ROW_NUMBER() OVER (ORDER BY colum DESC) 是先把colum列降序,再为降序以后的每条colum记录返回一个序号。
示例:

Row_Num    colum

1              2200

2              2150

3             1780

4             1125

Row_NUMBER() OVER (PARTITION BY COL1 ORDER BY COL2) 表示根据COL1分组,在分组内部根据 COL2排序,而此函数计算的值就表示每组内部排序后的顺序编号(组内连续的唯一的,没有重复值)

实例1:

初始化数据

  1.  
    create table employer (employerid int ,deptid int ,salary decimal(8,1))
  2.  
     
  3.  
    insert into employer values(1,1,15000.0)
  4.  
     
  5.  
    insert into employer values(2,1,10000.0)
  6.  
     
  7.  
    insert into employer values(3,2,19000.0)
  8.  
     
  9.  
    insert into employer values(4,2,21000.0)
  10.  
     
  11.  
    insert into employer values(5,3,14500.0)
  12.  
     
  13.  
    insert into employer values(6,3,10000.0)
  14.  
     
  15.  
    insert into employer values(7,3,44500.0)
  16.  
     
  17.  
    insert into employer values(8,4,22500.0)
  18.  
     
  19.  
    insert into employer values(9,4,35500.0)
  20.  
     
  21.  
    insert into employer values(10,4,35500.0)
  22.  
     
  23.  
    insert into employer values(11,4,36000.0)
  24.  
     
  25.  
    insert into employer values(12,4,36000.0)

数据显示为

employerid       deptid      salary
----------- ----------- ---------------------------------------
1                         1          15000.0

2                         1          10000.0

3                         2          19000.0

4                         2          21000.0

5                         3          14500.0

6                         3          10000.0

7                         3          44500.0

8                         4          22500.0

9                         4          35500.0

10                       4          35500.0

11                       4          36000.0

12                       4          36000.0

需求:根据部门分组,显示每个部门的工资等级

预期结果:

employerid       deptid      salary              Leve  
----------- ----------- ---------------------------------------
1                         1          15000.0               1

2                         1          10000.0               2

4                         2          21000.0               1

3                         2          19000.0               2

7                         3          44500.0               1

5                         3          14500.0               2

6                         3          10000.0               3

11                       4          36000.0               1

12                       4          36000.0               2

9                         4          35500.0               3

10                       4          35500.0               4

8                         4          22500.0               5

SQL脚本:

SELECT *, ROW_NUMBER() OVER (PARTITION BY deptid ORDER BY salary desc) Leve FROM employeer

实例2:

初始化数据

  1.  
    create table tb_EmployerSign (SignId int ,EmployerId int ,SignDate datetime)-- 创建员工签到表
  2.  
     
  3.  
    insert into tb_EmployerSign values(1,1,'2014-09-15 18:21:38.130' )
  4.  
     
  5.  
    insert into tb_EmployerSign values(2,2,'2014-09-16 18:21:38.130' )
  6.  
     
  7.  
    insert into tb_EmployerSign values(3,3,'2014-09-14 18:21:38.130' )
  8.  
     
  9.  
    insert into tb_EmployerSign values(4,4,'2014-09-16 18:21:38.130' )
  10.  
     
  11.  
    insert into tb_EmployerSign values(5,1,'2014-09-17 18:21:38.130' )
  12.  
     
  13.  
    insert into tb_EmployerSign values(6,2,'2014-09-17 19:21:38.130' )
  14.  
     
  15.  
    insert into tb_EmployerSign values(7,3,'2014-09-19 18:21:38.130' )
  16.  
     
  17.  
    insert into tb_EmployerSign values(8,4,'2014-09-20 18:21:38.130' )

数据显示为

SignId       EmployerId              SignDate
----------- ----------- -------------------------------------------
1                      1            2014-09-15 18:21:38.130

2                      2            2014-09-16 18:21:38.130

3                      3            2014-09-14 18:21:38.130

4                      4            2014-09-16 18:21:38.130

5                      1            2014-09-17 18:21:38.130

6                      2            2014-09-17 19:21:38.130

7                      3            2014-09-19 18:21:38.130

8                      4            2014-09-20 18:21:38.130

需求:查询三天内没有签到的员工最后一次签到的信息

假如今天是2014-09-21 则预期结果:

SignId             EmployerId             SignDate                        OutDateNumb
-------------------------------------------------------------------------------------------------------
       5                           1          2014-09-17 18:21:38.130                   4

6                           2          2014-09-17 19:21:38.130                   4

SQL脚本:

  1.  
    select SignId,EmployerId,SignDate,datediff(dd,SignDate,getdate()) as OutDateNumb
  2.  
     
  3.  
    from (select *,ROW_NUMBER() over(PARTITION by EmployerId order by signId DESC) numb from EmployerSign) tb
  4.  
     
  5.  
    where tb.numb=1 and datediff(dd,SignDate,getdate())>3<span style="font-size:14px;"><strong>
  6.  
    </strong></span>

二、RANK()的用法

语法:RANK() OVER (PARTITION BY COL1 ORDER BY COL2) 

RANK()的用法和ROW_NUMBER()类似,只不过RANK()是跳跃排序,有两个第三名时接下来就是第五名(同样是在各个分组内).

例如执行如下SQL语句之后实例1中的数据显示结果如下:

SELECT *, RANK() OVER (PARTITION BY deptid ORDER BY salary desc) Leve FROM employer

结果:

employerid       deptid      salary              Leve  
----------- ----------- ---------------------------------------
1                         1          15000.0               1

2                         1          10000.0               2

4                         2          21000.0               1

3                         2          19000.0               2

7                         3          44500.0               1

5                         3          14500.0               2

6                         3          10000.0               3

11                       4          36000.0               1

12                       4          36000.0               1

9                         4          35500.0               3

10                       4          35500.0               3

8                         4          22500.0               5

三、DENSE_RANK()的用法

语法:DENSE_RANK() OVER(PARTITION BY COL1 ORDER BY COL2)

DENSE_RANK()的用法和ROW_NUMBER()类似,只不过DENSE_RANK()是连续排序,有两个第二名时仍然跟着第三名(同样在各个分组内)。

例如执行如下SQL语句后实例1中的数据显示如下:

SELECT *, DENSE_RANK() OVER (PARTITION BY deptid ORDER BY salary desc) Leve FROM employee

结果:

employerid       deptid      salary              Leve  
----------- ----------- ---------------------------------------
1                         1          15000.0               1

2                         1          10000.0               2

4                         2          21000.0               1

3                         2          19000.0               2

7                         3          44500.0               1

5                         3          14500.0               2

6                         3          10000.0               3

11                       4          36000.0               1

12                       4          36000.0               1

9                         4          35500.0               2

10                       4          35500.0               2

8                         4          22500.0               3

SQL中ROW_NUMBER()/RANK() /DENSE_RANK() OVER函数的基本用法的更多相关文章

  1. sqlserver 中row_number,rank,dense_rank,ntile排名函数的用法

    1.row_number() 就是行号 2.rank:类似于row_number,不同之处在于,它会对order by 的字段进行处理,如果这个字段值相同,那么,行号保持不变 3.dense_rank ...

  2. SQL Server中排名函数row_number,rank,dense_rank,ntile详解

    SQL Server中排名函数row_number,rank,dense_rank,ntile详解 从SQL SERVER2005开始,SQL SERVER新增了四个排名函数,分别如下:1.row_n ...

  3. 大数据学习day29-----spark09-------1. 练习: 统计店铺按月份的销售额和累计到该月的总销售额(SQL, DSL,RDD) 2. 分组topN的实现(row_number(), rank(), dense_rank()方法的区别)3. spark自定义函数-UDF

    1. 练习 数据: (1)需求1:统计有过连续3天以上销售的店铺有哪些,并且计算出连续三天以上的销售额 第一步:将每天的金额求和(同一天可能会有多个订单) SELECT sid,dt,SUM(mone ...

  4. 知方可补不足~row_number,rank,dense_rank,ntile排名函数的用法

    回到目录 这篇文章介绍SQL中4个很有意思的函数,我称它的行标函数,它们是row_number,rank,dense_rank和ntile,下面分别进行介绍. 一 row_number:它为数据表加一 ...

  5. SQL Server - 四种排序, ROW_NUMBER() /RANK() /DENSE_RANK() /ntile() over()

    >>>>英文版 (更简洁易懂)<<<< 转载自:https://dzone.com/articles/difference-between-rownum ...

  6. ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over()

    ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over()   今天女票问我SqlServer的四种排序,当场写了几句Sql让她了解,现把相关Sql放上来. 首先, ...

  7. Hive学习之路 (十四)Hive分析窗口函数(二) NTILE,ROW_NUMBER,RANK,DENSE_RANK

    概述 本文中介绍前几个序列函数,NTILE,ROW_NUMBER,RANK,DENSE_RANK,下面会一一解释各自的用途. 注意: 序列函数不支持WINDOW子句.(ROWS BETWEEN) 数据 ...

  8. 在MySQL中实现Rank高级排名函数【转】

    MySQL中没有Rank排名函数,当我们需要查询排名时,只能使用MySQL数据库中的基本查询语句来查询普通排名.尽管如此,可不要小瞧基础而简单的查询语句,我们可以利用其来达到Rank函数一样的高级排名 ...

  9. 在MySQL中实现Rank高级排名函数

    MySQL中没有Rank排名函数,当我们需要查询排名时,只能使用MySQL数据库中的基本查询语句来查询普通排名.尽管如此,可不要小瞧基础而简单的查询语句,我们可以利用其来达到Rank函数一样的高级排名 ...

随机推荐

  1. Linux命令_用户和用户组管理

    新增组的命令 groupadd 格式:groupadd [-g GID] groupname 如果不加-g选项,则按照系统默认的gid创建组.跟uid一样,gid也是从1000开始的. 我们也可以如下 ...

  2. Java是一门面向对象编程语言的理解

    Java是一门面向对象编程语言. 不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承.指针等概念,因此Java语言具有功能强大和简单易用两个特征. Java语言作为静态面向对象编程语言的 ...

  3. 嵌入式驱动开发只设备数---dts

    http://blog.sina.com.cn/s/blog_ad64b8200101e7q0.html

  4. Wings 3D

    Wings 3D 编辑 Wings 3D 是一个开源的三维计算机图形软件.使用翼边数据库.注重于多边形建模,构思取与 Izware 的 Nendo 和 Mirai.支持多种操作系统,包括 Linux. ...

  5. Java项目性能持续优化中……

     尽量使用StringBuilder和StringBuffer进行字符串连接, 参考链接: Java编程中“为了性能”尽量要做到的一些地方

  6. 大爱HTML5 9款超炫HTML5最新动画源码

    我们分享过很多漂亮的HTML5动画,包括CSS3菜单.HTML5 Canvas动画等.今天我们精选了9款非常不错的超炫HTML5最新动画及其源码,一起来看看. 1.HTML5可爱的404页面动画 很逗 ...

  7. eclipse中去掉validate的方法

    昨天在右击项目想选择refresh的时候一不小心选择了validate,就发现target包出现了红色的叉号.当时觉得反正项目运行没有什么异常,就这么凑合了一天半多. 后来,当我改jsp的时候从< ...

  8. VIM技巧:选择文本块

    在正常模式下(按ESC进入)按键v进入可视化模式,然后按键盘左右键或h,l键即可实现文本的选择.其它相关命令:v:按字符选择.经常使用的模式,所以亲自尝试一下它. V:按行选择.这在你想拷贝或者移动很 ...

  9. Java编程思想学习笔记——访问权限修饰词

    几种访问权限修饰词 public,protected,private,friendly(Java中并无该修饰词,即包访问权限,不提供任何访问修饰词) 使用时,放置在类中成员(域或方法)的定义之前的,仅 ...

  10. eclipse 运行springboot项目

    一:当在eclipse启动spring boot项目时出现问题: 错误: 找不到或无法加载主类 com.example.demo.DemoApplication 解决办法: 1,通过cmd命令行,进入 ...