python数据结构之树(二分查找树)
本篇学习笔记记录二叉查找树的定义以及用python实现数据结构增、删、查的操作。
二叉查找树(Binary Search Tree)
简称BST,又叫二叉排序树(Binary Sort Tree),是对称顺序的二叉树,支持多种动态集合操作。
二叉树也是:
- 空
- 两个不相交的二叉树(左和右)
对称顺序
- 每个节点都有一个密钥,每个节点的密钥都是
- 大于其左侧子树中的所有密钥
- 小于其右侧子树中的所有密钥
BST 用Python表示
BST是对根节点的引用
节点由四个字段组成
- 一个 Key 和 一个 Value
- 对左子树(较小的密钥)和右子树(较大的密钥)的引用
class Node(object):
__slots__ = '_item' , '_lchild' , '_rchild' def __init__ (self, item, lchild=None, rchild=None):
self._item = item
self._lchild = lchild
self._rchild = rchild
BST操作方法
- BST 搜索
- BST 插入
- BST获取最小值与最大值
- BST 删除
BST 搜索
- 获取:返回给定键对应的值;如果没有这样的键,则返回null
- 成本:比较的数量等于1 +节点的深度
# Get树元素的方法
def get(self, key):
return self.__get(self._root, key); def __get(self, node, key): # helper
if (node is None):
return None
if (key == node._item):
return node._item
if (key < node._item):
return self.__get(node._lchild, key)
else:
return self.__get(node._rchild, key)
BST 插入
添加:将关联值与关键字关联
搜索密钥,然后搜索两个案例
- 键入树⇒重置值
- 密钥不在树中⇒添加新节点
成本:比较的数量等于1 +节点的深度
# add元素的方法
def add(self, value):
self._root = self.__add(self._root, value) def __add(self, node, value): # return node ,helper
if (node is None):
return Node(value)
if (value == node._item):
pass
else:
if (value < node._item):
node._lchild = self.__add(node._lchild, value)
else:
node._rchild = self.__add(node._rchild, value)
return node
BST 删除
最复杂的二叉搜索树操作
我们必须确保当我们移除一个元素时,我们维护二叉 搜索树属性
删除最小密钥
- 向左移动直到找到带有空左链接的节点
- 用正确的链接替换该节点
- 更新子树计数
# remove树元素的方法
def remove(self, key):
self._root = self.__remove(self._root, key) def __remove(self, node, key): # helper
if node is None:
return None
if (key < node._item):
node._lchild = self.__remove(node._lchild, key)
elif (key > node._item):
node._rchild = self.__remove(node._rchild, key)
else:
if (node._lchild is None):
node = node._rchild
# if rchild is None, node = None; case 1: no child
# if rchild is not None, node = node._rchild; case 2: one child
elif (node._rchild is None):
node = node._lchild
else:
node._item = self.__get_max(node._lchild)
node._lchild = self.__remove(node._lchild, node._item) return node
BST获取最小值与最大值
# get max 元素的方法
def get_max(self):
return self.__get_max(self._root) def __get_max(self, node): # helper
if (node is None):
return None
while (node._rchild is not None):
node = node._rchild
return node._item
python数据结构之树(二分查找树)的更多相关文章
- 手把手教你用java实现二分查找树及其相关操作
二分查找树(Binary Search Tree)的基本操作有搜索.求最大值.求最小值.求前继.求后继.插入及删除. 对二分查找树的进行基本操作所花费的时间与树的高度成比例.例如有n个节点的完全二叉树 ...
- Go 数据结构--二分查找树
Go 数据结构--二分查找树 今天开始一个Go实现常见数据结构的系列吧.有时间会更新其他数据结构. 一些概念 二叉树:二叉树是每个节点最多有两个子树的树结构. 完全二叉树:若设二叉树的高度为h,除第 ...
- Python与数据结构[3] -> 树/Tree[1] -> 表达式树和查找树的 Python 实现
表达式树和查找树的 Python 实现 目录 二叉表达式树 二叉查找树 1 二叉表达式树 表达式树是二叉树的一种应用,其树叶是常数或变量,而节点为操作符,构建表达式树的过程与后缀表达式的计算类似,只不 ...
- lintcode-106-排序列表转换为二分查找树
106-排序列表转换为二分查找树 给出一个所有元素以升序排序的单链表,将它转换成一棵高度平衡的二分查找树 样例 标签 递归 链表 思路 类似于二分查找,每次将链表二分,中间节点作为根节点,在建立左子树 ...
- 笔试算法题(58):二分查找树性能分析(Binary Search Tree Performance Analysis)
议题:二分查找树性能分析(Binary Search Tree Performance Analysis) 分析: 二叉搜索树(Binary Search Tree,BST)是一颗典型的二叉树,同时任 ...
- 离散化+线段树/二分查找/尺取法 HDOJ 4325 Flowers
题目传送门 题意:给出一些花开花落的时间,问某个时间花开的有几朵 分析:这题有好几种做法,正解应该是离散化坐标后用线段树成端更新和单点询问.还有排序后二分查找询问点之前总花开数和总花凋谢数,作差是当前 ...
- 【数据结构】关于前缀树(单词查找树,Trie)
前缀树的说明和用途 前缀树又叫单词查找树,Trie,是一类常用的数据结构,其特点是以空间换时间,在查找字符串时有极大的时间优势,其查找的时间复杂度与键的数量无关,在能找到时,最大的时间复杂度也仅为键的 ...
- SPOJ TEMPLEQ - Temple Queues(二分查找+树状数组)
题意: 有N个队伍(1 <= N <= 100,000),每个队伍开始有ai个人[0 <= ai<= 100,000,000],有Q个操作[0<=Q<= 500,0 ...
- Python 数据结构与算法 —— 哈弗曼树
1. 从扩充二叉树到哈弗曼树 扩充二叉树:对二叉树 T,加入足够多的新叶节点(而不是任意),使 T 的原有结点都变成度数为 2 的分支节点,得到的二叉树称为 T 的扩充二叉树. 对于扩充二叉树而言, ...
- python bisect 排序模块 二分查找与 bisect 模块
python 3.6.5 import bisect bisect_list=dir(bisect)print(bisect_list)bisect_list = ['__builtins__', ' ...
随机推荐
- Dubbo -- 系统学习 笔记 -- 示例 -- 负载均衡
Dubbo -- 系统学习 笔记 -- 目录 示例 想完整的运行起来,请参见:快速启动,这里只列出各种场景的配置方式 负载均衡 在集群负载均衡时,Dubbo提供了多种均衡策略,缺省为random随机调 ...
- 自定义tag标签-实现long类型转换成Date类型
数据库里存储的是bigint型的时间,entity实体中存放的是long类型的标签,现在想输出到jsp页面,由于使用的是jstl标签,而要显示的是可读的时间类型,找来找去有个 fmt:formatDa ...
- (转)base64编码是怎么工作的?
按:在PHP中级班的课堂上,有位同学问这样一个问题:“我在用 base64_encode 对用户名进行编码时,会出来等号,是不是可以去掉?”跟我来看完这篇文章,答案即揭晓. 1: 为什么需要base6 ...
- 一句话木马:ASPX篇
aspx木马收集: <%@ Page Language="Jscript"%><%eval(Request.Item["chopper"],& ...
- 使用 urllib 设置代理服务
(1) 如果我们一直用同一个IP去请求同一个网站上的网页,久了之后可能会被该网站服务器屏蔽,因此我们可以使用代理IP来发起请求,代理实际上指的就是代理服务器(2) 当我们使用代理IP发起请求时,服务器 ...
- JQuery选择器和DOM的操作-入门学习
嘿嘿,今天学习了JQuery,前面的一周都在学习javascript,今天学习了JQuery,虽然javascript的类库有很多个,例如:Prototype,Dojo,JQuery等,javascr ...
- Xcode 插件集:xTextHandler
本文转载至 http://www.tuicool.com/articles/zIFvQn7 基于 Xcode Source Editor Extension 做了一个插件集,叫做 xTextHandl ...
- kaggle 泰坦尼克号问题总结
学习了机器学习这么久,第一次真正用机器学习中的方法解决一个实际问题,一步步探索,虽然最后结果不是很准确,仅仅达到了0.78647,但是真是收获很多,为了防止以后我的记忆虫上脑,我决定还是记录下来好了. ...
- android checkbox样式
1. 首先要导入你准备用作CheckBox选中和补选中状态的两图片到res的drawable中,如checkbox_checked.png,checkbox_normal.png: 2. 在res/d ...
- 免费的Web服务
这个网站包括和很多免费的Web服务,比如传说中的天气预报.手机号归属地.IP地址归属地.列车时刻表.邮箱验证.验证码图片生成.还有什么股票,基金 http://www.webxml.com.cn/zh ...