HDU 2829 - Lawrence - [斜率DP]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829
You are to write a program to help Lawrence figure out how to best use his limited resources. You have some information from British Intelligence. First, the rail line is completely linear---there are no branches, no spurs. Next, British Intelligence has assigned a Strategic Importance to each depot---an integer from 1 to 100. A depot is of no use on its own, it only has value if it is connected to other depots. The Strategic Value of the entire railroad is calculated by adding up the products of the Strategic Values for every pair of depots that are connected, directly or indirectly, by the rail line. Consider this railroad:
Its Strategic Value is 4*5 + 4*1 + 4*2 + 5*1 + 5*2 + 1*2 = 49.
Now, suppose that Lawrence only has enough resources for one attack. He cannot attack the depots themselves---they are too well defended. He must attack the rail line between depots, in the middle of the desert. Consider what would happen if Lawrence attacked this rail line right in the middle:
The Strategic Value of the remaining railroad is 4*5 + 1*2 = 22. But, suppose Lawrence attacks between the 4 and 5 depots:
The Strategic Value of the remaining railroad is 5*1 + 5*2 + 1*2 = 17. This is Lawrence's best option.
Given a description of a railroad and the number of attacks that Lawrence can perform, figure out the smallest Strategic Value that he can achieve for that railroad.
Input
There will be several data sets. Each data set will begin with a line with two integers, n and m. n is the number of depots on the railroad (1≤n≤1000), and m is the number of attacks Lawrence has resources for (0≤m<n). On the next line will be n integers, each from 1 to 100, indicating the Strategic Value of each depot in order. End of input will be marked by a line with n=0 and m=0, which should not be processed.
Output
For each data set, output a single integer, indicating the smallest Strategic Value for the railroad that Lawrence can achieve with his attacks. Output each integer in its own line.
Sample Input
4 1
4 5 1 2
4 2
4 5 1 2
0 0
Sample Output
17
2
题意:
给出一条笔直无分叉的铁路上有n个仓库,每个仓库有一个v[i]代表价值;
每两个仓库之间算作一段铁路,现在有m次攻击机会,一次攻击可以炸毁一段铁路;
m次攻击后,剩余的总价值为:Σ(v[i]*v[j]),i和j为所有任意两个互相可到达的仓库。
现要求选定m段铁路进行攻击炸毁,然后使得总价值最小。
题解:
设dp[i][j]是前i个仓库,炸掉j段铁路后,剩余总价值的最小值。(显然,j<i)
设w[a][b]表示铁路完好的情况下,从a仓库到b仓库的总价值,即:
那么,就有:
dp[i][j] = min( dp[k][j-1] + w[k+1][i] ),j≤k<i;
方程的意义是:炸毁仓库k和仓库k+1之间的那段铁路(即第k段铁路),算出总价值,枚举k找到最小的。
那么如何计算w[k+1][i]呢?
假设$sum\left[ i \right] = \sum\limits_{k = 1}^i {v\left[ k \right]}$,那么就有:
w[1][i] = w[1][k] + w[k+1][i] + (v[1]+v[2]+…+v[k]) × (v[k+1]+v[k+2]+…+v[i])
= w[1][k] + w[k+1][i] + sum[k] × (sum[i]-sum[k])
即w[k+1][i] = w[1][i] - w[1][k] - sum[k] × (sum[i]-sum[k])
我们把w[k+1][i]的计算式带入状态转移方程得到:
dp[i][j] = min{ dp[k][j-1] + w[1][i] - w[1][k] - sum[k] × (sum[i]-sum[k]) }
那么,对于这个DP,j一个循环、i一个循环、k一个循环,就是O(n3)的时间复杂度;
需要斜率优化,优化到O(n2)即可。
对于第a段铁路和第b段铁路(1≤a<b<i),我们若有:
可以说第b段铁路优于第a段铁路。
对上式进行变形可得:
我们假设:
那么
选择炸毁第b段铁路优于炸毁第a段铁路 <=> g(a,b) ≤ sum[i]
选择炸毁第b段铁路劣于炸毁第a段铁路 <=> g(a,b) > sum[i]
然后后面的操作就和HDU3507http://www.cnblogs.com/dilthey/p/8745843.html差不多了:
①在计算dp[i][j]时,若有j≤a<b<c<i,只要满足g(a,b) ≥ g(b,c),则b点必然被淘汰.
证明:若g(b,c) ≤ sum[i],则选择第c段铁路优于第b段铁路,b淘汰;
若g(b,c) > sum[i],则g(a,b) > sum[i],则选第b段铁路差于第a段,b淘汰。
②若在计算dp[i][j]时,k点被淘汰,则计算dp[i+1][j]时,k点必然也被淘汰.
AC代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+; int n,m;
int sum[maxn]; //前缀和
int w[maxn]; //w[1][i]
int dp[maxn][maxn];
int q[maxn],head,tail; double g(int a,int b,int j)
{
double up = (dp[b][j-]-w[b]+sum[b]*sum[b]) - (dp[a][j-]-w[a]+sum[a]*sum[a]);
double down = sum[b]-sum[a];
return up/down;
}
int main()
{
while(scanf("%d%d",&n,&m) && n+m>)
{
sum[]=;
for(int i=,tmp;i<=n;i++)
{
scanf("%d",&tmp);
sum[i]=sum[i-]+tmp;
w[i]=w[i-]+sum[i-]*tmp;
} for(int i=;i<=n;i++) dp[i][]=w[i];
for(int j=;j<=m;j++)
{
head=tail=;
q[tail++]=j;
for(int i=j+,a,b;i<=n;i++)
{
while(head+<tail)
{
a=q[head], b=q[head+];
if(g(a,b,j)<=sum[i]) head++;
else break;
}
int k=q[head];
dp[i][j]=dp[k][j-]+w[i]-w[k]-sum[k]*(sum[i]-sum[k]); while(head+<tail)
{
a=q[tail-], b=q[tail-];
if(g(a,b,j)>=g(b,i,j)) tail--;
else break;
}
q[tail++]=i;
}
} printf("%d\n",dp[n][m]);
}
}
注意点:
本题看到v[i]在1到100之间,所以不会出现sum[b]-sum[a]=0这种除数为零的情况,所以可以直接求g(a,b),而不用再转成乘法比大小。
斜率DP也算是有一定的套路,能够优化一维的时间复杂度,所以刚开始做斜率DP的时候,应先从普通的DP进行考虑(包括条件初始化、状态转移的顺序之类),然后再考虑加入斜率优化。
HDU 2829 - Lawrence - [斜率DP]的更多相关文章
- hdu 2829 Lawrence(斜率优化DP)
题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
- HDU 2829 Lawrence (斜率DP)
斜率DP 设dp[i][j]表示前i点,炸掉j条边的最小值.j<i dp[i][j]=min{dp[k][j-1]+cost[k+1][i]} 又由得出cost[1][i]=cost[1][k] ...
- HDU 3480 - Division - [斜率DP]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480 Time Limit: 10000/5000 MS (Java/Others) Memory L ...
- ACM-ICPC 2016 沈阳赛区现场赛 I. The Elder && HDU 5956(斜率DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5956 题意:一颗树上每条边有个权值,每个节点都有新闻要送到根节点就是1节点,运送过程中如果不换青蛙就是 ...
- HDU 2829 Lawrence(斜率优化DP O(n^2))
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...
- HDU 2829 [Lawrence] DP斜率优化
解题思路 首先肯定是考虑如何快速求出一段铁路的价值. \[ \sum_{i=1}^k \sum_{j=1, j\neq i}^kA[i]A[j]=(\sum_{i=1}^kA[i])^2-\sum_{ ...
- HDU.2829.Lawrence(DP 斜率优化)
题目链接 \(Description\) 给定一个\(n\)个数的序列,最多将序列分为\(m+1\)段,每段的价值是这段中所有数两两相乘的和.求最小总价值. \(Solution\) 写到这突然懒得写 ...
- HDU 2829 Lawrence(四边形优化DP O(n^2))
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...
随机推荐
- Dubbo调用链(version:2.5.3)
Consumer 调用 Provider的过程: (CONSUMER)Dubbo服务调用处 --> 调用RPC代理 --> InvokerInvocationHandler#invoke( ...
- 给一个由n-1个整数组成的未排序的序列,其元素都是1~n中的不同的整数。如何在线性时间复杂度内寻找序列中缺失的整数
思路分析:尼玛这不就是等差数列么.首先将该n-1个整数相加,得到sum,然后用(1+n)n/2减去sum,得到的差即为缺失的整数.因为1~n一共n个数,n个数的和为(1+n)n/2,而未排序数列的和为 ...
- H5开发HybridApp
1 H5开发 开发HybridApp一般都是先完成H5部分,所谓的H5就是Html5页面,开发的时候我们在PC机上的浏览器调试即可,这里推荐Chrome F12模式. 在调试服务器请求数据部分要给ch ...
- Linux下 PHP 安装pecl_http方法
Linux下自带的PHP不支持HTTP库,需要自己安装 pecl_http组件安装步骤如下: 1. 组件安装 1.1 安装php-devel开发组件 yum install php-devel 1.2 ...
- nodejs服务器部署教程三
安装mongodb数据库 如何在ubuntu上安装mongodb数据库,其实官方文档写的很清楚啦 sudo apt-key adv --keyserver hkp://keyserver.ubuntu ...
- 【RF库Collections测试】Remove From List
Name:Remove From ListSource:Collections <test library>Arguments:[ list_ | index ]Removes and r ...
- ice服务初探
http://masterkey.iteye.com/blog/182975 http://blog.csdn.net/moxiaomomo/article/details/6773979 http: ...
- Java中获取资源文件的方法总结
这里总结3中方法获取资源文件的 ServletContext Class ClassLoader 文件的位置 1. ServletContext public void doGet(HttpServl ...
- js数组sort方法
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- oracle数据据 Python+Pandas 获取Oracle数据库并加入DataFrame
import pandas as pd import sys import imp imp.reload(sys) from sqlalchemy import create_engine impor ...