Noting is more interesting than rotation! 

Your little sister likes to rotate things. To put it easier to analyze, your sister makes n rotations. In the i-th time, she makes everything in the plane rotate counter-clockwisely around a point ai by a radian of pi. 

Now she promises that the total effect of her rotations is a single rotation around a point A by radian P (this means the sum of pi is not a multiplier of 2π). 

Of course, you should be able to figure out what is A and P :). 

InputThe first line contains an integer T, denoting the number of the test cases. 

For each test case, the first line contains an integer n denoting the number of the rotations. Then n lines follows, each containing 3 real numbers x, y and p, which means rotating around point (x, y) counter-clockwisely by a radian of p. 

We promise that the sum of all p's is differed at least 0.1 from the nearest multiplier of 2π. 

T<=100. 1<=n<=10. 0<=x, y<=100. 0<=p<=2π.
OutputFor each test case, print 3 real numbers x, y, p, indicating that the overall rotation is around (x, y) counter-clockwisely by a radian of p. Note that you should print p where 0<=p<2π. 

Your answer will be considered correct if and only if for x, y and p, the absolute error is no larger than 1e-5. 

Sample Input

1
3
0 0 1
1 1 1
2 2 1

Sample Output

1.8088715944 0.1911284056 3.0000000000

划重点!

一个点绕定点旋转的坐标公式:

在平面坐标上,任意点P(x1,y1),绕一个坐标点Q(x2,y2)旋转θ角度后,新的坐标设为(x, y)的计算公式:
  1. x= (x1 - x2)*cos(θ) - (y1 - y2)*sin(θ) + x2 ;
  2. y= (x1 - x2)*sin(θ) + (y1 - y2)*cos(θ) + y2 ;

这道题里最后的旋转角度就是前面所有的旋转角度加起来 因为不管绕哪一个点旋转 整个画面都转过了相同的角度 画面上的每一个点也都转过了相同的角度

先设一个点 对于每一次旋转都对这个点进行旋转 就可以得到最后的时候这个点的坐标

在根据这个点最后的坐标与最开始的坐标 可以反推出旋转中心

emmm感觉自己高中学的几何的公式都忘光了 计算能力也大大下降 解一个复杂一点的方程都解不出了啊天哪好难过

#include <iostream>
#include <algorithm>
#include <cstring> #include <cstdio> #include <cmath> using namespace std;
#define PI 3.1415926
#define EPS 1.0e-5 int t, n;
struct point{
double x, y;
}p[15]; point rot(point& p, point& ding, double theta)
{
point c;
c.x = (p.x - ding.x) * cos(theta) - (p.y - ding.y) * sin(theta) + ding.x;
c.y = (p.x - ding.x) * sin(theta) + (p.y - ding.y) * cos(theta) + ding.y;
return c;
} int main()
{
cin>>t;
while(t--){
scanf("%d",&n);
double anangle = 0.0;
point a, b;
a.x = -1.0; a.y = -20.0;
b.x = -1.0; b.y = -20.0;
for(int i = 0; i < n; i++){
double angle;
scanf("%lf%lf%lf",&p[i].x, &p[i].y, &angle);
a = rot(a, p[i], angle);
anangle += angle;
while(anangle >= 2 * PI){
anangle -= 2 * PI;
} } point ans;
ans.y =(a.x*sin(anangle)+a.y*(1-cos(anangle))-(b.x*cos(anangle)-b.y*sin(anangle))*sin(anangle)-(b.x*sin(anangle)+b.y*cos(anangle))*(1-cos(anangle)))/(2-2*cos(anangle));
ans.x=(a.x*(1-cos(anangle))-a.y*sin(anangle)-(b.x*cos(anangle)-b.y*sin(anangle))*(1-cos(anangle))+(b.x*sin(anangle)+b.y*cos(anangle))*sin(anangle))/(2-2*cos(anangle));
printf("%.6f %.6f %.6f\n", ans.x, ans.y, anangle);
}
return 0; }

hdu4998 Rotate【计算几何】的更多相关文章

  1. hdu4998 Rotate 计算几何

    Noting is more interesting than rotation! Your little sister likes to rotate things. To put it easie ...

  2. HDU 4998 Rotate (计算几何)

    HDU 4998 Rotate (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4998 Description Noting is more ...

  3. 【几何模板加点小思路】hdu-4998 Rotate

    用几何模板敲的,也有直接公式推的,追求短代码的可以点右上角小红了...... 题意就是想想一个物体分别做绕某一点(给出坐标)旋转p度(给出角度)后,其位置等价于绕哪一点旋转多少度,输出该等价点及其等价 ...

  4. sdut 2603:Rescue The Princess(第四届山东省省赛原题,计算几何,向量旋转 + 向量交点)

    Rescue The Princess Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 Several days ago, a b ...

  5. HDU 4063 Aircraft(计算几何)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4063 Description You are playing a flying game. In th ...

  6. Rotate

    hdu4998:http://acm.hdu.edu.cn/showproblem.php?pid=4998 题意:给你n个点,以及绕每个点旋转的弧度.然后,问你经过这n次旋转,平面中的点总的效果是相 ...

  7. UVA12304 2D Geometry 110 in 1! 计算几何

    计算几何: 堆几何模版就能够了. . .. Description Problem E 2D Geometry 110 in 1! This is a collection of 110 (in bi ...

  8. 计算几何总结(Part 1~2)

    Preface 对于一个初三连三角函数都不会的蒟蒻来说计算几何简直就是噩梦. 反正都是要学的也TM没办法,那就慢慢一点点学起吧. 计算几何要有正确的板子,不然那种几百行CODE的题写死你. 本蒟蒻的学 ...

  9. UVA 12304 - 2D Geometry 110 in 1! - [平面几何基础题大集合][计算几何模板]

    题目链接:https://cn.vjudge.net/problem/UVA-12304 题意: 作为题目大合集,有以下一些要求: ①给出三角形三个点,求三角形外接圆,求外接圆的圆心和半径. ②给出三 ...

随机推荐

  1. NYOJ 116 士兵杀敌 (线段树,区间和)

    题目链接:NYOJ 116 士兵杀敌 士兵杀敌(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:5 描写叙述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的 ...

  2. http 返回码 405 解决方案之一

    今天做网络请求数据的时候遇到返回码405,当时就傻了~~ 故事是这样的-- 我用post请求访问一个url,服务端数据是一个json的txt文件,理论上直接访问,返回json,然后解析就没事了,可是今 ...

  3. python运行显示编码错误

    python中运行显示编码错误一般有2种原因: 编码与译码的方式不一致 在编写Python时,当使用中文输出或注释时运行脚本,会提示错误信息: SyntaxError: Non-ASCII chara ...

  4. openvpn记住用户名和密码,自动连接

    1, 打开openvpn安装目录 2, 在config目录中, 找到VPN服务器的配置文件, 我的是config.ovpn,将 auth-user-pass (若已经存在)改为 auth-user-p ...

  5. Win10 如何安装 Ubuntu

    在 Microsoft Store 中安装 Ubuntu ( 如下图1 ) 把开发者模式打开 ( 如下图2 ) 把 WSL ( Windows下的Linux子系统 ) 打开并重启电脑 ( 如下图3 )

  6. AddChild

    using UnityEngine; using UnityEngine; using UnityEditor; using System.Collections; public class AddC ...

  7. 《Mysql 入门很简单》(读后感①)

    下载完整版<Mysql 入门很简单>,点击这里~: http://files.cnblogs.com/files/zhengyeye/MySQL%E5%85%A5%E9%97%A8%E5% ...

  8. 从Eclipse转移到IntelliJ IDEA的一点心得

    IntelliJ使用指南—— 深入理解IntelliJ的Web部署逻辑 Intellij IDEA 部署Web项目,解决 404 错误 Intellij IDEA快捷键的使用 本文转载地址 本人使用I ...

  9. 【MySQL8】 安装后的简单配置(主要解决navicat等客户端登陆报错问题)

    一.navicat等客户端登陆报错的原因 使用mysql,多数我们还是喜欢用可视化的客户端登陆管理的,个人比较喜欢用navicat.一般装好服务器以后,习惯建一个远程的登陆帐号,在mysql8服务器上 ...

  10. Python在mysql中进行操作是十分容易和简洁的

    首先声明一下,我用的是Windows系统! 1.在Python中对mysql数据库进行操作首先要导入pymysql模块,默认情况下,Python中是没有安装这个模块的, 可以在Windows的命令行中 ...