Noting is more interesting than rotation! 

Your little sister likes to rotate things. To put it easier to analyze, your sister makes n rotations. In the i-th time, she makes everything in the plane rotate counter-clockwisely around a point ai by a radian of pi. 

Now she promises that the total effect of her rotations is a single rotation around a point A by radian P (this means the sum of pi is not a multiplier of 2π). 

Of course, you should be able to figure out what is A and P :). 

InputThe first line contains an integer T, denoting the number of the test cases. 

For each test case, the first line contains an integer n denoting the number of the rotations. Then n lines follows, each containing 3 real numbers x, y and p, which means rotating around point (x, y) counter-clockwisely by a radian of p. 

We promise that the sum of all p's is differed at least 0.1 from the nearest multiplier of 2π. 

T<=100. 1<=n<=10. 0<=x, y<=100. 0<=p<=2π.
OutputFor each test case, print 3 real numbers x, y, p, indicating that the overall rotation is around (x, y) counter-clockwisely by a radian of p. Note that you should print p where 0<=p<2π. 

Your answer will be considered correct if and only if for x, y and p, the absolute error is no larger than 1e-5. 

Sample Input

1
3
0 0 1
1 1 1
2 2 1

Sample Output

1.8088715944 0.1911284056 3.0000000000

划重点!

一个点绕定点旋转的坐标公式:

在平面坐标上,任意点P(x1,y1),绕一个坐标点Q(x2,y2)旋转θ角度后,新的坐标设为(x, y)的计算公式:
  1. x= (x1 - x2)*cos(θ) - (y1 - y2)*sin(θ) + x2 ;
  2. y= (x1 - x2)*sin(θ) + (y1 - y2)*cos(θ) + y2 ;

这道题里最后的旋转角度就是前面所有的旋转角度加起来 因为不管绕哪一个点旋转 整个画面都转过了相同的角度 画面上的每一个点也都转过了相同的角度

先设一个点 对于每一次旋转都对这个点进行旋转 就可以得到最后的时候这个点的坐标

在根据这个点最后的坐标与最开始的坐标 可以反推出旋转中心

emmm感觉自己高中学的几何的公式都忘光了 计算能力也大大下降 解一个复杂一点的方程都解不出了啊天哪好难过

#include <iostream>
#include <algorithm>
#include <cstring> #include <cstdio> #include <cmath> using namespace std;
#define PI 3.1415926
#define EPS 1.0e-5 int t, n;
struct point{
double x, y;
}p[15]; point rot(point& p, point& ding, double theta)
{
point c;
c.x = (p.x - ding.x) * cos(theta) - (p.y - ding.y) * sin(theta) + ding.x;
c.y = (p.x - ding.x) * sin(theta) + (p.y - ding.y) * cos(theta) + ding.y;
return c;
} int main()
{
cin>>t;
while(t--){
scanf("%d",&n);
double anangle = 0.0;
point a, b;
a.x = -1.0; a.y = -20.0;
b.x = -1.0; b.y = -20.0;
for(int i = 0; i < n; i++){
double angle;
scanf("%lf%lf%lf",&p[i].x, &p[i].y, &angle);
a = rot(a, p[i], angle);
anangle += angle;
while(anangle >= 2 * PI){
anangle -= 2 * PI;
} } point ans;
ans.y =(a.x*sin(anangle)+a.y*(1-cos(anangle))-(b.x*cos(anangle)-b.y*sin(anangle))*sin(anangle)-(b.x*sin(anangle)+b.y*cos(anangle))*(1-cos(anangle)))/(2-2*cos(anangle));
ans.x=(a.x*(1-cos(anangle))-a.y*sin(anangle)-(b.x*cos(anangle)-b.y*sin(anangle))*(1-cos(anangle))+(b.x*sin(anangle)+b.y*cos(anangle))*sin(anangle))/(2-2*cos(anangle));
printf("%.6f %.6f %.6f\n", ans.x, ans.y, anangle);
}
return 0; }

hdu4998 Rotate【计算几何】的更多相关文章

  1. hdu4998 Rotate 计算几何

    Noting is more interesting than rotation! Your little sister likes to rotate things. To put it easie ...

  2. HDU 4998 Rotate (计算几何)

    HDU 4998 Rotate (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4998 Description Noting is more ...

  3. 【几何模板加点小思路】hdu-4998 Rotate

    用几何模板敲的,也有直接公式推的,追求短代码的可以点右上角小红了...... 题意就是想想一个物体分别做绕某一点(给出坐标)旋转p度(给出角度)后,其位置等价于绕哪一点旋转多少度,输出该等价点及其等价 ...

  4. sdut 2603:Rescue The Princess(第四届山东省省赛原题,计算几何,向量旋转 + 向量交点)

    Rescue The Princess Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 Several days ago, a b ...

  5. HDU 4063 Aircraft(计算几何)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4063 Description You are playing a flying game. In th ...

  6. Rotate

    hdu4998:http://acm.hdu.edu.cn/showproblem.php?pid=4998 题意:给你n个点,以及绕每个点旋转的弧度.然后,问你经过这n次旋转,平面中的点总的效果是相 ...

  7. UVA12304 2D Geometry 110 in 1! 计算几何

    计算几何: 堆几何模版就能够了. . .. Description Problem E 2D Geometry 110 in 1! This is a collection of 110 (in bi ...

  8. 计算几何总结(Part 1~2)

    Preface 对于一个初三连三角函数都不会的蒟蒻来说计算几何简直就是噩梦. 反正都是要学的也TM没办法,那就慢慢一点点学起吧. 计算几何要有正确的板子,不然那种几百行CODE的题写死你. 本蒟蒻的学 ...

  9. UVA 12304 - 2D Geometry 110 in 1! - [平面几何基础题大集合][计算几何模板]

    题目链接:https://cn.vjudge.net/problem/UVA-12304 题意: 作为题目大合集,有以下一些要求: ①给出三角形三个点,求三角形外接圆,求外接圆的圆心和半径. ②给出三 ...

随机推荐

  1. sql server 存储过程基础知识

    转自家园大哥博文http://www.cnblogs.com/jiajiayuan/archive/2011/06/15/2081201.html 什么是存储过程呢?存储过程就是作为可执行对象存放在数 ...

  2. Web实时通信之Socket.IO

    前面两篇文章使用了Ajax long polling和WebSocket两种常用的Web实时通信方式构建了简单的聊天程序. 但是,由于浏览器的兼容问题,不是所有的环境都可以使用WebSocket这种比 ...

  3. 《C++标准程序库》笔记之四

    本篇博客笔记顺序大体按照<C++标准程序库(第1版)>各章节顺序编排. ---------------------------------------------------------- ...

  4. 【资源大全】.NET资源大全中文版(Awesome最新版)

    算法与数据结构(Algorithms and Data structures) 应用程序接口(API) 应用程序框架(Application Frameworks) 模板引擎(Application ...

  5. Delphi应用程序的调试(六)步进式代码调试

    步进式代码调试(Stepping Through Your Code) 步进式代码调试是最基本的调试操作之一,但仍要在此讲述.人们常常容易犯只见树木不见森林的错误.经常复习基本的知识有助于读者了解以前 ...

  6. Python OS 文件/目录方法

    Python OS 文件/目录方法 os 模块提供了非常丰富的方法用来处理文件和目录.常用的方法如下表所示: 序号 方法及描述 1 os.access(path, mode) 检验权限模式 2 os. ...

  7. python函数定义语法总结

    见下面代码及注释: def calc(value): sum=0 for m in value: sum=sum+m return sum data=[1,2,3,4,5,6,7,8,9,10] pr ...

  8. Android6.0中PowerManagerService分析

    转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=30510400&id=5569393 概述 一直以来,电源管理是 ...

  9. how-to-build-c-static-libraries-boost

    http://tungchingkai.blogspot.jp/2016/11/how-to-build-c-static-libraries-boost.html How to build C++ ...

  10. hadoop 日常问题汇总(持续更新)

    问题描述:每次执行hadoop的shell命令时均出现如下警告: [hadoop@MyDB01 ~]$ hadoop fs -ls / 16/09/25 07:59:13 WARN util.Nati ...