Noting is more interesting than rotation! 

Your little sister likes to rotate things. To put it easier to analyze, your sister makes n rotations. In the i-th time, she makes everything in the plane rotate counter-clockwisely around a point ai by a radian of pi. 

Now she promises that the total effect of her rotations is a single rotation around a point A by radian P (this means the sum of pi is not a multiplier of 2π). 

Of course, you should be able to figure out what is A and P :). 

InputThe first line contains an integer T, denoting the number of the test cases. 

For each test case, the first line contains an integer n denoting the number of the rotations. Then n lines follows, each containing 3 real numbers x, y and p, which means rotating around point (x, y) counter-clockwisely by a radian of p. 

We promise that the sum of all p's is differed at least 0.1 from the nearest multiplier of 2π. 

T<=100. 1<=n<=10. 0<=x, y<=100. 0<=p<=2π.
OutputFor each test case, print 3 real numbers x, y, p, indicating that the overall rotation is around (x, y) counter-clockwisely by a radian of p. Note that you should print p where 0<=p<2π. 

Your answer will be considered correct if and only if for x, y and p, the absolute error is no larger than 1e-5. 

Sample Input

1
3
0 0 1
1 1 1
2 2 1

Sample Output

1.8088715944 0.1911284056 3.0000000000

划重点!

一个点绕定点旋转的坐标公式:

在平面坐标上,任意点P(x1,y1),绕一个坐标点Q(x2,y2)旋转θ角度后,新的坐标设为(x, y)的计算公式:
  1. x= (x1 - x2)*cos(θ) - (y1 - y2)*sin(θ) + x2 ;
  2. y= (x1 - x2)*sin(θ) + (y1 - y2)*cos(θ) + y2 ;

这道题里最后的旋转角度就是前面所有的旋转角度加起来 因为不管绕哪一个点旋转 整个画面都转过了相同的角度 画面上的每一个点也都转过了相同的角度

先设一个点 对于每一次旋转都对这个点进行旋转 就可以得到最后的时候这个点的坐标

在根据这个点最后的坐标与最开始的坐标 可以反推出旋转中心

emmm感觉自己高中学的几何的公式都忘光了 计算能力也大大下降 解一个复杂一点的方程都解不出了啊天哪好难过

#include <iostream>
#include <algorithm>
#include <cstring> #include <cstdio> #include <cmath> using namespace std;
#define PI 3.1415926
#define EPS 1.0e-5 int t, n;
struct point{
double x, y;
}p[15]; point rot(point& p, point& ding, double theta)
{
point c;
c.x = (p.x - ding.x) * cos(theta) - (p.y - ding.y) * sin(theta) + ding.x;
c.y = (p.x - ding.x) * sin(theta) + (p.y - ding.y) * cos(theta) + ding.y;
return c;
} int main()
{
cin>>t;
while(t--){
scanf("%d",&n);
double anangle = 0.0;
point a, b;
a.x = -1.0; a.y = -20.0;
b.x = -1.0; b.y = -20.0;
for(int i = 0; i < n; i++){
double angle;
scanf("%lf%lf%lf",&p[i].x, &p[i].y, &angle);
a = rot(a, p[i], angle);
anangle += angle;
while(anangle >= 2 * PI){
anangle -= 2 * PI;
} } point ans;
ans.y =(a.x*sin(anangle)+a.y*(1-cos(anangle))-(b.x*cos(anangle)-b.y*sin(anangle))*sin(anangle)-(b.x*sin(anangle)+b.y*cos(anangle))*(1-cos(anangle)))/(2-2*cos(anangle));
ans.x=(a.x*(1-cos(anangle))-a.y*sin(anangle)-(b.x*cos(anangle)-b.y*sin(anangle))*(1-cos(anangle))+(b.x*sin(anangle)+b.y*cos(anangle))*sin(anangle))/(2-2*cos(anangle));
printf("%.6f %.6f %.6f\n", ans.x, ans.y, anangle);
}
return 0; }

hdu4998 Rotate【计算几何】的更多相关文章

  1. hdu4998 Rotate 计算几何

    Noting is more interesting than rotation! Your little sister likes to rotate things. To put it easie ...

  2. HDU 4998 Rotate (计算几何)

    HDU 4998 Rotate (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4998 Description Noting is more ...

  3. 【几何模板加点小思路】hdu-4998 Rotate

    用几何模板敲的,也有直接公式推的,追求短代码的可以点右上角小红了...... 题意就是想想一个物体分别做绕某一点(给出坐标)旋转p度(给出角度)后,其位置等价于绕哪一点旋转多少度,输出该等价点及其等价 ...

  4. sdut 2603:Rescue The Princess(第四届山东省省赛原题,计算几何,向量旋转 + 向量交点)

    Rescue The Princess Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 Several days ago, a b ...

  5. HDU 4063 Aircraft(计算几何)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4063 Description You are playing a flying game. In th ...

  6. Rotate

    hdu4998:http://acm.hdu.edu.cn/showproblem.php?pid=4998 题意:给你n个点,以及绕每个点旋转的弧度.然后,问你经过这n次旋转,平面中的点总的效果是相 ...

  7. UVA12304 2D Geometry 110 in 1! 计算几何

    计算几何: 堆几何模版就能够了. . .. Description Problem E 2D Geometry 110 in 1! This is a collection of 110 (in bi ...

  8. 计算几何总结(Part 1~2)

    Preface 对于一个初三连三角函数都不会的蒟蒻来说计算几何简直就是噩梦. 反正都是要学的也TM没办法,那就慢慢一点点学起吧. 计算几何要有正确的板子,不然那种几百行CODE的题写死你. 本蒟蒻的学 ...

  9. UVA 12304 - 2D Geometry 110 in 1! - [平面几何基础题大集合][计算几何模板]

    题目链接:https://cn.vjudge.net/problem/UVA-12304 题意: 作为题目大合集,有以下一些要求: ①给出三角形三个点,求三角形外接圆,求外接圆的圆心和半径. ②给出三 ...

随机推荐

  1. SQLServer------远程调用失败

    1.情况 出现 2.解决方法 打开“控制面板” -> “卸载程序” -> 找到 “Microsoft SQL Server 2016) ExpressLocalDB”将其卸载 -> ...

  2. 【遥感影像】Python GDAL 像素与坐标对应

    转:https://blog.csdn.net/theonegis/article/details/50805520 https://blog.csdn.net/wsp_1138886114/arti ...

  3. NTP服务器时间集群借节点之间同步

    1.三个节点时间同步,cdh1,cdh2,cdh3 2.做法:cdh1从网络时间同步,然后cdh2和cdh3从cdh1节点同步 3.安装与自启动设置 yum install ntp 按上面的安装方式在 ...

  4. Python网络编程笔记

    01. UDP(user datagram protocol)用户数据报协议 01. 特点 01. 无连接 02. 不可靠 03. 每个被传输的数据报必须限定在64KB之内 02. 优点:效率高s 缺 ...

  5. Linux下用C获取当前时间

    Linux下用C获取当前时间,具体如下: 代码(可以把clock_gettime换成time(NULL)) ? 1 2 3 4 5 6 7 8 9 10 void getNowTime() {  ti ...

  6. linux下复制文件报cp: omitting directory `XXX'

    错误操作:这个错误是因为在linux下我使用cp复制一个文件夹A到另一个目录下时报错cp: omitting directory `XXX' 原因:文件夹A中还有子目录文件,所以linux不允许直接复 ...

  7. javaBean的理解总结

    javaBean简单理解:javaBean在MVC设计模型中是model,又称模型层,在一般的程序中,我们称它为数据层,就是用来设置数据的属性和一些行为,然后我会提供获取属性和设置属性的get/set ...

  8. 【HubbleDotNet】HubbleDotNet配置安装注册key获取

    今天配置HubbleDotNet发现一个问题 安装界面需要注册key 点击[get key],跳转网页: http://www.hubbledotnet.com/key.aspx 结果网页有bug,坑 ...

  9. Esper学习之八:EPL语法(四)

    关于EPL,已经写了三篇了,预估计了一下,除了今天这篇,后面还有5篇左右.大家可别嫌多,官方的文档对EPL的讲解有将近140页,我已经尽量将废话都干掉了,再配合我附上的例子,看我的10篇文章比那140 ...

  10. 【线程】Thread中的join介绍

    因为sleep.wait.join等阻塞,可以使用interrupted exception异常唤醒. 一.作用 Thread类中的join方法的主要作用就是同步,它可以使得线程之间的并行执行变为串行 ...