《python并发之协程》
一:
单线程下实现并发,即只在一个主线程,并且cpu只有一个的情况下实现并发。(并发的本质:切换+保存状态)
cpu正在运行一个任务,会在两种情况下切去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,第二种情况是该任务计算时间过长。

主线程的三种状态:
其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来大家都被执行的效果,如果多个程序都是纯计算任务,这种切换反而会降低效率。
为此我们基于yield验证。yield本身就是一种在单线程下可以保存任务运行状态的方法。
yiled:
1:可以保存状态,yiled的状态保存与操作系统的保存线程的状态很像,但是yiled是代码级别控制的,更轻量级。
2:send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换。
#串行执行
import time
def consumer(res):
print('任务1:接收数据,处理数据')
def producer():
print('任务2:产生数据')
res = []
for i in range(10000000):
res.append(i)
return res
start = time.time()
#串行执行
res= producer()
consumer(res)
stop = time.time()
print(stop-start)
#基于yield并发执行
# import time
# def consumer():
# # print('任务1:接收数据,处理数据')
# while True:
# x = yield
# def producer():
# # print('任务2:生产数据')
# g = consumer()
# next(g)
# for i in range(10000000):#2.691828966140747
# g.send(i)
# start = time.time()
#基于yiled保存状态,实现两个任务直接来回切换,即并发的效果
#ps:如果每个任务中都加上打印,那么明显地看到两个任务是你一次我一次,即并发执行
# producer()
# stop = time.time()
# print(stop-start)

而在单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下多个任务能遇到io就切换,这样保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将io操作最大限度地隐藏起来,该线程好像是一直处于计算过程,io比较少。

协成的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。

1:可以控制多个任务之间的切换,切换之前将任务的状态保存下来(重新运行时,可以基于暂停的位置继续)

2:作为1的补充:可以检测io操作,在遇到io操作的情况下发生切换。

二:协称介绍(Coroutine)

协程:是单线程下的并发,又称微线程,纤程。

协程是一种用户态的轻量级线程(是由用户程序自己控制调度的)

强调:

      1:python的线程属于内核级别的,即由操作系统控制调度(单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)

      2:单线程内开启协程,一旦遇到io,就会应用程序级别(而非操作系统)控制切换,以此提升效率(非io操作的切换方式与效率无关)

对比操作系统控制线程的切换,用户在单线程内控制协程的切换

优点:

1:协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更轻量级。

2:单线程内就可以实现并发的效果,最大限度地利用cpu

缺点:

1:协程的本质就是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程。

2:协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个协程。

协程的特点:

1:必须在只有一个单线程里实现并发。

2:修改共享数据不需要加锁

3:用户程序里自己保存多个控制流的上下文栈。

4:一个协程遇到io操作自动切换到其他协程(如何实现检测io,yiled,greenlet都无法实现,就用到了geven模块(select机制))

 三:Greenlet

如果我们在单个线程内有20个任务,每个任务的代码分两部分:前半部分是纯计算,后半部分是纯io。

要想实现在多个任务之间切换,yield生成器的方式,需要先得到初始化一次的生成器,然后再调用send。。。非常麻烦,使用greenlet模块可以非常简单地实现这20个任务直接的切换

rom greenlet import greenlet
import time
def eat(name):
print('%s eat 1'%name)
time.sleep(3)
g2.switch('悟空')
print('%s eat 2'%name)
g2.switch()
def play(name):
print('%s play 1'%name)
g1.switch()
print('%s play 2'%name)
g1 = greenlet(eat)
g2 = greenlet(play)
g1.switch('悟空')#可以在第一次swith时传入参数,以后都不需要
--------------------------结果----------------------------------------

悟空 eat 1
悟空 play 1
悟空 eat 2
悟空 play 2

单纯的切换(在没有io的情况下或者没有开辟内存空间的操作),反而会降低程序的执行速度
import time
def f1():
res = 1
for i in range(100000000):
res+=1
def f2():
res = 1
for i in range(100000000):
res*=i
start = time.time()
f1()
f2()
stop = time.time()
print('run time is %s'%(stop-start))#run time is 23.827917337417603
# from greenlet import greenlet
# import time
# def f1():
# res = 1
# for i in range(100000000):
# res+=i
# g2.switch()
# def f2():
# res = 1
# for i in range(100000000):
# res*=i
# g1.switch()
# start = time.time()
# g1 = greenlet(f1)
# g2 = greenlet(f2)
# g1.switch()
# stop = time.time()
# print('run time is %s'%(stop-start))#158.59044671058655

greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时遇到阻塞io,那就原地阻塞,仍然是没有解决遇到io自动切换来提升效率的问题。

四:Gevent

Gevent是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet,它是以C扩展模块形式接入Python的轻量级协程。(Greenlet全部运行在主程序操作系统进程的内部,但他们被称作协作式的调度)

用法:
       g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的

       g2=gevent.spawn(func2)

       g1.join() #等待g1结束

       g2.join() #等待g2结束

       #或者上述两步合作一步:gevent.joinall([g1,g2])

       g1.value#拿到func1的返回值
遇到IO阻塞时会自动切换任务:
import gevent
def eat(name):
print('%s eat 1'%name)
gevent.sleep(2)
print('%s eat 2'%name)
def play(name):
print('%s play 1'%name)
gevent.sleep(3)
print('%s play 2'%name)
g1 = gevent.spawn(eat,'悟空')
g2= gevent.spawn(play,name='悟空')
g1.join()
g2.join()
#gevent.joinal([g1,g2])
print('主')
--------------------------------------结果-----------------------------------

悟空 eat 1
悟空 play 1
悟空 eat 2
悟空 play 2

上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,

而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了

from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前

或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头

from gevent import monkey;monkey.patch_all()
import gevent
import time
def eat():
print('eat food 1')
time.sleep(2)
print('eat food 2')
def play():
print('play 1')
time.sleep(1)
print('play 2')
g1 = gevent.spawn(eat)
g2 = gevent.spawn(play)
gevent.joinall([g1,g2])
print('主')
------------------------------------结果----------------------------

at food 1
play 1
play 2
eat food 2

五:Gevent之同步异步

from gevent import spawn,joinall,monkey;monkey.patch_all()
import time
def task(pid):
#一些不确定的任务
time.sleep(0.5)
print('Task %s done'%pid)
def synchronuns():
for i in range(10):
task(i)
def asynchronuns():
g_l = [spawn(task,i) for i in range(10)]
joinall(g_l)
if __name__ == '__main__':
print('Synchronous')
synchronuns()
print('A')
asynchronuns()
#上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。
# 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,
# 后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在 所有greenlet执行完后才
# 会继续向下走。
------------------------------结果-----------------------------------------------

Synchronous
Task 0 done
Task 1 done
Task 2 done
Task 3 done
Task 4 done
Task 5 done
Task 6 done
Task 7 done
Task 8 done
Task 9 done
A
Task 0 done
Task 9 done
Task 8 done
Task 7 done
Task 6 done
Task 5 done
Task 4 done
Task 3 done
Task 2 done
Task 1 done

 
六:Gevent应用举例一
通过gevent实现单线程下的socket并发(from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞)

服务端

from gevent import monkey;monkey.patch_all()
from socket import *
import gevent #如果不想用money.patch_all()打补丁,可以用gevent自带的socket
# from gevent import socket
# s=socket.socket() def server(server_ip,port):
s=socket(AF_INET,SOCK_STREAM)
s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
s.bind((server_ip,port))
s.listen(5)
while True:
conn,addr=s.accept()
gevent.spawn(talk,conn,addr) def talk(conn,addr):
try:
while True:
res=conn.recv(1024)
print('client %s:%s msg: %s' %(addr[0],addr[1],res))
conn.send(res.upper())
except Exception as e:
print(e)
finally:
conn.close() if __name__ == '__main__':
server('127.0.0.1',8080)

客户端

from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080)) while True:
msg=input('>>: ').strip()
if not msg:continue client.send(msg.encode('utf-8'))
msg=client.recv(1024)
print(msg.decode('utf-8'))

多线程并发多个客户端

from threading import Thread
from socket import *
import threading def client(server_ip,port):
c=socket(AF_INET,SOCK_STREAM) #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了
c.connect((server_ip,port)) count=0
while True:
c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8'))
msg=c.recv(1024)
print(msg.decode('utf-8'))
count+=1
if __name__ == '__main__':
for i in range(500):
t=Thread(target=client,args=('127.0.0.1',8080))
t.start()

python----并发之协程的更多相关文章

  1. Python中Paramiko协程方式详解

    什么是协程 协程我们可以看做是一种用户空间的线程. 操作系统对齐存在一无所知,需要用户自己去调度. 比如说进程,线程操作系统都是知道它们存在的.协程的话是用户空间的线程,操作系统是不知道的. 为什么要 ...

  2. [转载]Python 3.5 协程究竟是个啥

    http://blog.rainy.im/2016/03/10/how-the-heck-does-async-await-work-in-python-3-5/ [译] Python 3.5 协程究 ...

  3. [译] Python 3.5 协程究竟是个啥

    转自:http://blog.rainy.im/2016/03/10/how-the-heck-does-async-await-work-in-python-3-5/ [译] Python 3.5 ...

  4. python中的协程及实现

    1.协程的概念: 协程是一种用户态的轻量级线程.协程拥有自己的寄存器上下文和栈. 协程调度切换时,将寄存器上下文和栈保存到其他地方,在切换回来的时候,恢复先前保存的寄存器上下文和栈. 因此,协程能保留 ...

  5. Python基础之协程

    阅读目录 一 引子 二 协程介绍 三 Greenlet模块 四 Gevent模块 引子 之前我们学习了线程.进程的概念,了解了在操作系统中 进程是资源分配的最小单位,线程是CPU调度的最小单位. 按道 ...

  6. python线程、协程、I/O多路复用

    目录: 并发多线程 协程 I/O多路复用(未完成,待续) 一.并发多线程 1.线程简述: 一条流水线的执行过程是一个线程,一条流水线必须属于一个车间,一个车间的运行过程就是一个进程(一个进程内至少一个 ...

  7. 协程及Python中的协程

    1 协程 1.1协程的概念 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程:协程是一种用户态的轻量级线程.(其实并没有说明白~) 我觉得单说协程,比较抽象,如果对线程有一定了解 ...

  8. python中和生成器协程相关的yield from之最详最强解释,一看就懂(四)

    如果认真读过上文的朋友,应该已经明白了yield from实现的底层generator到caller的上传数据通道是什么了.本文重点讲yield from所实现的caller到coroutine的向下 ...

  9. python中和生成器协程相关yield from之最详最强解释,一看就懂(二)

    一. 从列表中yield  语法形式:yield from <可迭代的对象实例> python中的列表是可迭代的, 如果想构造一个生成器逐一产生list中元素,按之前的yield语法,是在 ...

随机推荐

  1. SQLServer------基本操作

    代码: --新增字段 ) --编辑字段名称 --注意: 更改对象名的任一部分都可能会破坏脚本和存储过程 EXEC sp_rename 'FTTxUser.[Modifiersss]','Creator ...

  2. Linux常用命令总结--基础命令

    系统信息 1.arch 显示机器的处理器架构(1) 2.uname -m 显示机器的处理器架构(2) 3.lsb_release -a 查看操作系统版本 4.top 查看进程 5.free -m 查看 ...

  3. Dubbo -- 系统学习 笔记 -- 示例 -- 静态服务

    Dubbo -- 系统学习 笔记 -- 目录 示例 想完整的运行起来,请参见:快速启动,这里只列出各种场景的配置方式 静态服务 有时候希望人工管理服务提供者的上线和下线,此时需将注册中心标识为非动态管 ...

  4. 5 -- Hibernate的基本用法 --4 1 创建Configuration对象

    org.hibernate.cfg.Configuration实例代表了应用程序到SQL数据库的配置信息,Configuration对象提供了一个buildSessionFactory()方法,该方法 ...

  5. SpringMVC -- 梗概--源码--贰--下载

    1.配置web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app version=&qu ...

  6. ios开发之--使用AFN上传3.1.0上传视频,不走成功回调原因及解决方法

    在测试接口的时候,发现接口称走走了,但是success的回调不走,检查了下代码,发现没有初始化下面两个方法: manage.responseSerializer = [AFHTTPResponseSe ...

  7. win10禁止更新的方法

    Windows10强制更新苦恼了很多人,下面提供三种禁止Windows10更新的方法. 禁止Windows update服务 启动任务管理器->选择服务->打开服务. 找到Windows ...

  8. javascript/css压缩工具---yuicompressor使用方法

    1. 下载 地址:https://github.com/yui/yuicompressor/downloads 2. 安装 yuicompressor是由java写成的一组jar文件,需要jdk环境支 ...

  9. make: Warning: File `Makefile' has modification time 17 s in the future

    linux下,make makefile文件的时候报警告: make: Warning: File `Makefile' has modification time 17 s in the futur ...

  10. 转载->C#中的委托的使用和讲解

    C# 中的委托 引言 委托 和 事件在 .Net Framework中的应用非常广泛,然而,较好地理解委托和事件对很多接触C#时间不长的人来说并不容易.它们就像是一道槛儿,过了这个槛的人,觉得真是太容 ...