tf.unstack\tf.unstack
tf.unstack
原型:
unstack(
value,
num=None,
axis=0,
name='unstack' )
官方解释:https://tensorflow.google.cn/api_docs/python/tf/unstack
解释:这是一个对矩阵进行分解的函数,以下为关键参数解释:
value:代表需要分解的矩阵变量(其实就是一个多维数组,一般为二维);
axis:指明对矩阵的哪个维度进行分解。
要理解tf.unstack函数,我们不妨先来看看tf.stack函数。Tf.stack刚好是与tf.unstack函数相反,前者是对矩阵进行拼接,后者则对矩阵进行分解。
Tf.stack用法举例:假如现在有两个变量,a=[1, 2, 3],b=[4, 5, 6],现在我要使用tf.stack对他们进行拼接,变成一个二维矩阵[ [1, 2, 3], [4, 5, 6] ]。代码【示例1】如下:
【示例1】
import tensorflow as tf
a = tf.constant([1, 2, 3])
b = tf.constant([4, 5, 6])
c = tf.stack( [a,b], axis=0)
with tf.Session() as sess:
print(sess.run(c))
输出结果是:
[[1 2 3]
[4 5 6]]
此时,我如果把【示例1】里面的tf.stack参数axis=0改成1,运行结果如下:
[[1 4]
[2 5]
[3 6]]
可以理解,axis作用就是指明以何种方式对矩阵进行拼接,说白了,就是对原矩阵的哪个维度进行拼接。
理解了tf.stack,tf.unstack也就不难理解了。比如说现在有变量c,如下:
c=[[1 2 3]
[4 5 6]]
现在要对c进行分解,代码如下:
import tensorflow as tf
c = tf.constant([[1, 2, 3],
[4, 5, 6]])
d = tf.unstack(c, axis=0)
e = tf.unstack(c, axis=1)
with tf.Session() as sess:
print(sess.run(d))
print(sess.run(e))
结果如下:
[array([1, 2, 3]), array([4, 5, 6])]
[array([1, 4]), array([2, 5]), array([3, 6])]
可以看出来,tf.unstack其实就是在做与tf.stack相反的事情。这样一来,你是不是恍然大悟了呢?
作者:JempChou
链接:https://www.jianshu.com/p/25706575f8d4
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
tf.unstack\tf.unstack的更多相关文章
- tf.concat, tf.stack和tf.unstack的用法
tf.concat, tf.stack和tf.unstack的用法 tf.concat相当于numpy中的np.concatenate函数,用于将两个张量在某一个维度(axis)合并起来,例如: a ...
- TFboy养成记 tf.cast,tf.argmax,tf.reduce_sum
referrence: 莫烦视频 先介绍几个函数 1.tf.cast() 英文解释: 也就是说cast的直译,类似于映射,映射到一个你制定的类型. 2.tf.argmax 原型: 含义:返回最大值所在 ...
- TensorFlow学习笔记之--[tf.clip_by_global_norm,tf.clip_by_value,tf.clip_by_norm等的区别]
以下这些函数可以用于解决梯度消失或梯度爆炸问题上. 1. tf.clip_by_value tf.clip_by_value( t, clip_value_min, clip_value_max, n ...
- TensorFlow tf.app&tf.app.flags用法介绍
TensorFlow tf.app&tf.app.flags用法介绍 TensorFlow tf.app argparse tf.app.flags 下面介绍 tf.app.flags.FL ...
- TF:TF下CNN实现mnist数据集预测 96%采用placeholder用法+2层C及其max_pool法+隐藏层dropout法+输出层softmax法+目标函数cross_entropy法+AdamOptimizer算法
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 ...
- TF:TF分类问题之MNIST手写50000数据集实现87.4%准确率识别:SGD法+softmax法+cross_entropy法—Jason niu
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 ...
- TF:TF之Tensorboard实践:将神经网络Tensorboard形式得到events.out.tfevents文件+dos内运行该文件本地服务器输出到网页可视化—Jason niu
import tensorflow as tf import numpy as np def add_layer(inputs, in_size, out_size, n_layer, activat ...
- TF:TF定义两个变量相乘之placeholder先hold类似变量+feed_dict最后外界传入值—Jason niu
#TF:TF定义两个变量相乘之placeholder先hold类似变量+feed_dict最后外界传入值 import tensorflow as tf input1 = tf.placeholder ...
- tensorflow生成随机数的操作 tf.random_normal & tf.random_uniform & tf.truncated_normal & tf.random_shuffle
tf.random_normal 从正态分布输出随机值. random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name ...
随机推荐
- Spring Cloud config之一:分布式配置中心入门介绍
Spring Cloud Config为服务端和客户端提供了分布式系统的外部化配置支持.配置服务器为各应用的所有环境提供了一个中心化的外部配置.它实现了对服务端和客户端对Spring Environm ...
- -Java-Runoob-高级教程-实例-数组:09. Java 实例 – 数组扩容
ylbtech-Java-Runoob-高级教程-实例-数组:09. Java 实例 – 数组扩容 1.返回顶部 1. Java 实例 - 数组扩容 Java 实例 以下实例演示了如何在数组初始化后 ...
- 032:基于Consul和MGR的MySQL高可用架构
目录 一.Consul 1.Consul简介 2.准备环境 3.Consul 安装 4.Consul配置文件 5.Consul 服务检查脚本 6.Consul启动 二.MGR搭建 1.MGR配置 2. ...
- sql server查看表占用索引空间(小技巧)
选择表右键—属性—存储—索引空间
- AVL树Python实现(使用递推实现添加与删除)
# coding=utf-8 # AVL树的Python实现(树的节点中包含了指向父节点的指针) def get_height(node): return node.height if node el ...
- vb 使用StreamWriter书写流写出数据并生成文件
sql = "Select case when date ='' then '0'else CONVERT(varchar(100), date, 101) end as date,case ...
- 在线聊天室 -onlinechat
做了一个 在线聊天室,目前没什么人气,希望能被百度收录,给大家提供一个相对好的聊天环境 在线聊天室:http://www.3003soft.top/im
- servlet练习1
1. 编写一个Servlet,当用户请求该Servlet时,显示用户于几点几分从哪个IP(Internet Protocol)地址连线至服务器,以及发出的查询字符串(Query String).查询一 ...
- sqoop2的安装配置
1.下载 wget http://mirror.bit.edu.cn/apache/sqoop/1.99.7/sqoop-1.99.7-bin-hadoop200.tar.gz 2.解压 tar -z ...
- spring data jpa @query的用法
@Query注解的用法(Spring Data JPA) 参考文章:http://www.tuicool.com/articles/jQJBNv . 一个使用@Query注解的简单例子 @Query( ...