Minimum Cost

http://poj.org/problem?id=2516

Time Limit: 4000MS   Memory Limit: 65536K
Total Submissions: 19019   Accepted: 6716

Description

Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport.

It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

Input

The input consists of multiple test cases. The first line of each test case contains three integers N, M, K (0 < N, M, K < 50), which are described above. The next N lines give the shopkeepers' orders, with each line containing K integers (there integers are belong to [0, 3]), which represents the amount of goods each shopkeeper needs. The next M lines give the supply places' storage, with each line containing K integers (there integers are also belong to [0, 3]), which represents the amount of goods stored in that supply place.

Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper.

The input is terminated with three "0"s. This test case should not be processed.

Output

For each test case, if Dearboy can satisfy all the needs of all the shopkeepers, print in one line an integer, which is the minimum cost; otherwise just output "-1".

Sample Input

1 3 3
1 1 1
0 1 1
1 2 2
1 0 1
1 2 3
1 1 1
2 1 1 1 1 1
3
2
20 0 0 0

Sample Output

4
-1

Source

 
 
 
  因为每种物品是独立的,所以可以把每种物品拆开来算,再判断最大流是否符合要求即可
 
 #include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std; const int INF=0x3f3f3f3f;
const int N=;
const int M=;
int top;
int dist[N],pre[N];
bool vis[N];
int c[N];
int maxflow; struct Vertex{
int first;
}V[N];
struct Edge{
int v,next;
int cap,flow,cost;
}E[M]; void init(){
memset(V,-,sizeof(V));
top=;
maxflow=;
} void add_edge(int u,int v,int c,int cost){
E[top].v=v;
E[top].cap=c;
E[top].flow=;
E[top].cost=cost;
E[top].next=V[u].first;
V[u].first=top++;
} void add(int u,int v,int c,int cost){
add_edge(u,v,c,cost);
add_edge(v,u,,-cost);
} bool SPFA(int s,int t,int n){
int i,u,v;
queue<int>qu;
memset(vis,false,sizeof(vis));
memset(c,,sizeof(c));
memset(pre,-,sizeof(pre));
for(i=;i<=n;i++){
dist[i]=INF;
}
vis[s]=true;
c[s]++;
dist[s]=;
qu.push(s);
while(!qu.empty()){
u=qu.front();
qu.pop();
vis[u]=false;
for(i=V[u].first;~i;i=E[i].next){
v=E[i].v;
if(E[i].cap>E[i].flow&&dist[v]>dist[u]+E[i].cost){
dist[v]=dist[u]+E[i].cost;
pre[v]=i;
if(!vis[v]){
c[v]++;
qu.push(v);
vis[v]=true;
if(c[v]>n){
return false;
}
}
}
}
}
if(dist[t]==INF){
return false;
}
return true;
} int MCMF(int s,int t,int n){
int d;
int i,mincost;
mincost=;
while(SPFA(s,t,n)){
d=INF;
for(i=pre[t];~i;i=pre[E[i^].v]){
d=min(d,E[i].cap-E[i].flow);
}
maxflow+=d;
for(i=pre[t];~i;i=pre[E[i^].v]){
E[i].flow+=d;
E[i^].flow-=d;
}
mincost+=dist[t]*d;
}
return mincost;
} int seller[][];
int storage[][];
int matrix[][][]; int main(){
int n,m,k;
int v,u,w,c;
int s,t;
while(~scanf("%d %d %d",&n,&m,&k)){
if(!n&&!m&&!k) break;
int sum=;
for(int i=;i<=n;i++){
for(int j=;j<=k;j++){
scanf("%d",&seller[i][j]);
sum+=seller[i][j];
}
}
for(int i=;i<=m;i++){
for(int j=;j<=k;j++){
scanf("%d",&storage[i][j]);
}
}
for(int i=;i<=k;i++){
for(int j=;j<=n;j++){
for(int w=;w<=m;w++){
scanf("%d",&matrix[i][j][w]);
}
}
}
s=,t=n+m+;
int ANS=;
int flow=;
for(int i=;i<=k;i++){
init();
for(int j=;j<=n;j++){
add(s,j,seller[j][i],);
}
for(int j=;j<=n;j++){
for(int w=;w<=m;w++){
add(j,n+w,storage[w][i],matrix[i][j][w]);
}
}
for(int j=;j<=m;j++){
add(n+j,t,storage[j][i],);///INF
}
int ans=MCMF(s,t,t+);
ANS+=ans;
flow+=maxflow;
} if(flow==sum) printf("%d\n",ANS);
else printf("-1\n");
}
}

Minimum Cost(最小费用最大流,好题)的更多相关文章

  1. POJ2516:Minimum Cost(最小费用最大流)

    Minimum Cost Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 19088   Accepted: 6740 题目链 ...

  2. Minimum Cost(最小费用最大流)

    Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...

  3. POJ2516 Minimum Cost —— 最小费用最大流

    题目链接:https://vjudge.net/problem/POJ-2516 Minimum Cost Time Limit: 4000MS   Memory Limit: 65536K Tota ...

  4. POJ 2516 Minimum Cost [最小费用最大流]

    题意略: 思路: 这题比较坑的地方是把每种货物单独建图分开算就ok了. #include<stdio.h> #include<queue> #define MAXN 500 # ...

  5. 【网络流#2】hdu 1533 - 最小费用最大流模板题

    最小费用最大流,即MCMF(Minimum Cost Maximum Flow)问题 嗯~第一次写费用流题... 这道就是费用流的模板题,找不到更裸的题了 建图:每个m(Man)作为源点,每个H(Ho ...

  6. POJ2135 最小费用最大流模板题

    练练最小费用最大流 此外此题也是一经典图论题 题意:找出两条从s到t的不同的路径,距离最短. 要注意:这里是无向边,要变成两条有向边 #include <cstdio> #include ...

  7. 2018牛客网暑期ACM多校训练营(第五场) E - room - [最小费用最大流模板题]

    题目链接:https://www.nowcoder.com/acm/contest/143/E 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...

  8. hdu 1533 Going Home 最小费用最大流 入门题

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  9. POJ 2135 最小费用最大流 入门题

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19207   Accepted: 7441 Descri ...

  10. Poj 2516 Minimum Cost (最小花费最大流)

    题目链接: Poj  2516  Minimum Cost 题目描述: 有n个商店,m个仓储,每个商店和仓库都有k种货物.嘛!现在n个商店要开始向m个仓库发出订单了,订单信息为当前商店对每种货物的需求 ...

随机推荐

  1. java并发编程 Executor,Executors,ExecutorService,CompletionService,Future,C

    使用CompletionService获取多线程返回值 CompletionService和ExecutorCompletionService详解 Java并发编程系列之十五:Executor框架

  2. python redis启用线程池管理

    pool = redis.ConnectionPool(host=REDIS_HOST, port=REDIS_PORT,max_connections=3,password=REDIS_PASSWO ...

  3. NLP-Progress记录NLP最新数据集、论文和代码: 助你紧跟NLP前沿

    Github https://github.com/sebastianruder/NLP-progress 官方网址 https://nlpprogress.com/ NLP-Progress 同时涵 ...

  4. DOM实战-js todo

    1.需求: 实现一个如下页面: 最上面是输入框,后面是add按钮,输入文本点击add按钮,在下面就会出现一行,下面出现的每行最前面是两个按钮,然后后面是todo(要做的事) 第一个按钮是完成按钮,第二 ...

  5. 超文本标记语言HTML

    介绍html文档的基本结构,html常用标签的使用,理解html语言制作网页基本原理. html概述和基本结构 html概述 HTML是 HyperText Mark-up Language 的首字母 ...

  6. [Dart] Flutter开发中的几个常用函数

    几个Flutter开发中的常用函数 /** 返回当前时间戳 */ static int currentTimeMillis() { return new DateTime.now().millisec ...

  7. leetcode83

    /** * Definition for singly-linked list. * public class ListNode { * public int val; * public ListNo ...

  8. java Export Excel POI 转

    最终选择用POI成功导出excel.总之很有用. http://www.cnblogs.com/xwdreamer/archive/2011/07/20/2296975.html http://poi ...

  9. J2SE 8的编译

    动态加载(修改)服务.高性动态业务逻辑实现(用脚本或模板引擎实现效率满足不了需求) package compile; import java.io.File; import java.io.IOExc ...

  10. mysql打开log-bin报错

    在mysqld下设置log-bin后重启出现错误, [ERROR] You have enabled the binary log, but you haven't provided the mand ...