Minimum Cost

http://poj.org/problem?id=2516

Time Limit: 4000MS   Memory Limit: 65536K
Total Submissions: 19019   Accepted: 6716

Description

Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport.

It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

Input

The input consists of multiple test cases. The first line of each test case contains three integers N, M, K (0 < N, M, K < 50), which are described above. The next N lines give the shopkeepers' orders, with each line containing K integers (there integers are belong to [0, 3]), which represents the amount of goods each shopkeeper needs. The next M lines give the supply places' storage, with each line containing K integers (there integers are also belong to [0, 3]), which represents the amount of goods stored in that supply place.

Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper.

The input is terminated with three "0"s. This test case should not be processed.

Output

For each test case, if Dearboy can satisfy all the needs of all the shopkeepers, print in one line an integer, which is the minimum cost; otherwise just output "-1".

Sample Input

1 3 3
1 1 1
0 1 1
1 2 2
1 0 1
1 2 3
1 1 1
2 1 1 1 1 1
3
2
20 0 0 0

Sample Output

4
-1

Source

 
 
 
  因为每种物品是独立的,所以可以把每种物品拆开来算,再判断最大流是否符合要求即可
 
 #include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std; const int INF=0x3f3f3f3f;
const int N=;
const int M=;
int top;
int dist[N],pre[N];
bool vis[N];
int c[N];
int maxflow; struct Vertex{
int first;
}V[N];
struct Edge{
int v,next;
int cap,flow,cost;
}E[M]; void init(){
memset(V,-,sizeof(V));
top=;
maxflow=;
} void add_edge(int u,int v,int c,int cost){
E[top].v=v;
E[top].cap=c;
E[top].flow=;
E[top].cost=cost;
E[top].next=V[u].first;
V[u].first=top++;
} void add(int u,int v,int c,int cost){
add_edge(u,v,c,cost);
add_edge(v,u,,-cost);
} bool SPFA(int s,int t,int n){
int i,u,v;
queue<int>qu;
memset(vis,false,sizeof(vis));
memset(c,,sizeof(c));
memset(pre,-,sizeof(pre));
for(i=;i<=n;i++){
dist[i]=INF;
}
vis[s]=true;
c[s]++;
dist[s]=;
qu.push(s);
while(!qu.empty()){
u=qu.front();
qu.pop();
vis[u]=false;
for(i=V[u].first;~i;i=E[i].next){
v=E[i].v;
if(E[i].cap>E[i].flow&&dist[v]>dist[u]+E[i].cost){
dist[v]=dist[u]+E[i].cost;
pre[v]=i;
if(!vis[v]){
c[v]++;
qu.push(v);
vis[v]=true;
if(c[v]>n){
return false;
}
}
}
}
}
if(dist[t]==INF){
return false;
}
return true;
} int MCMF(int s,int t,int n){
int d;
int i,mincost;
mincost=;
while(SPFA(s,t,n)){
d=INF;
for(i=pre[t];~i;i=pre[E[i^].v]){
d=min(d,E[i].cap-E[i].flow);
}
maxflow+=d;
for(i=pre[t];~i;i=pre[E[i^].v]){
E[i].flow+=d;
E[i^].flow-=d;
}
mincost+=dist[t]*d;
}
return mincost;
} int seller[][];
int storage[][];
int matrix[][][]; int main(){
int n,m,k;
int v,u,w,c;
int s,t;
while(~scanf("%d %d %d",&n,&m,&k)){
if(!n&&!m&&!k) break;
int sum=;
for(int i=;i<=n;i++){
for(int j=;j<=k;j++){
scanf("%d",&seller[i][j]);
sum+=seller[i][j];
}
}
for(int i=;i<=m;i++){
for(int j=;j<=k;j++){
scanf("%d",&storage[i][j]);
}
}
for(int i=;i<=k;i++){
for(int j=;j<=n;j++){
for(int w=;w<=m;w++){
scanf("%d",&matrix[i][j][w]);
}
}
}
s=,t=n+m+;
int ANS=;
int flow=;
for(int i=;i<=k;i++){
init();
for(int j=;j<=n;j++){
add(s,j,seller[j][i],);
}
for(int j=;j<=n;j++){
for(int w=;w<=m;w++){
add(j,n+w,storage[w][i],matrix[i][j][w]);
}
}
for(int j=;j<=m;j++){
add(n+j,t,storage[j][i],);///INF
}
int ans=MCMF(s,t,t+);
ANS+=ans;
flow+=maxflow;
} if(flow==sum) printf("%d\n",ANS);
else printf("-1\n");
}
}

Minimum Cost(最小费用最大流,好题)的更多相关文章

  1. POJ2516:Minimum Cost(最小费用最大流)

    Minimum Cost Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 19088   Accepted: 6740 题目链 ...

  2. Minimum Cost(最小费用最大流)

    Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...

  3. POJ2516 Minimum Cost —— 最小费用最大流

    题目链接:https://vjudge.net/problem/POJ-2516 Minimum Cost Time Limit: 4000MS   Memory Limit: 65536K Tota ...

  4. POJ 2516 Minimum Cost [最小费用最大流]

    题意略: 思路: 这题比较坑的地方是把每种货物单独建图分开算就ok了. #include<stdio.h> #include<queue> #define MAXN 500 # ...

  5. 【网络流#2】hdu 1533 - 最小费用最大流模板题

    最小费用最大流,即MCMF(Minimum Cost Maximum Flow)问题 嗯~第一次写费用流题... 这道就是费用流的模板题,找不到更裸的题了 建图:每个m(Man)作为源点,每个H(Ho ...

  6. POJ2135 最小费用最大流模板题

    练练最小费用最大流 此外此题也是一经典图论题 题意:找出两条从s到t的不同的路径,距离最短. 要注意:这里是无向边,要变成两条有向边 #include <cstdio> #include ...

  7. 2018牛客网暑期ACM多校训练营(第五场) E - room - [最小费用最大流模板题]

    题目链接:https://www.nowcoder.com/acm/contest/143/E 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...

  8. hdu 1533 Going Home 最小费用最大流 入门题

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  9. POJ 2135 最小费用最大流 入门题

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19207   Accepted: 7441 Descri ...

  10. Poj 2516 Minimum Cost (最小花费最大流)

    题目链接: Poj  2516  Minimum Cost 题目描述: 有n个商店,m个仓储,每个商店和仓库都有k种货物.嘛!现在n个商店要开始向m个仓库发出订单了,订单信息为当前商店对每种货物的需求 ...

随机推荐

  1. 分布式一致性协议之:Gossip(八卦)算法

    Gossip算法因为Cassandra而名声大噪,Gossip看似简单,但要真正弄清楚其本质远没看起来那么容易.为了寻求Gossip的本质,下面的内容主要参考Gossip的原始论文:<<E ...

  2. centos-linux热拔插scsi硬盘

    自己配置虚拟机,需要添加一块虚拟硬盘存放数据.虚拟机在更新软件,不想停机.学习了下热拔插硬盘的知识点 1. 在虚拟机中创建虚拟磁盘并添加. 2. 查看目前的磁盘信息cat /proc/scsi/scs ...

  3. H3C的DHCP中继配置命令

    dhcp enable命令用来使能DHCP服务 dhcp relay information enable 命令用来配置DHCP中继支持Option 82功能 缺省情况下,DHCP中继不支持Optio ...

  4. PHP中的urlencode,rawurlencode和JS中的encodeURI,encodeURIComponent

    PHP中的urlencode,rawurlencode和JS中的encodeURI,encodeURIComponent [PHP中的urlencode和rawurlencode] urlencode ...

  5. Git 查询某次历史提交的修改内容

    在工作时,有时候想查看某次的提交修改了哪些的内容. 我们首先可以git log显示历史的提交列表: 之后我们用git show <commit-hashId> 便可以显示某次提交的修改内容 ...

  6. Apache Kudu as a More Flexible And Reliable Kafka-style Queue

    Howdy friends! In this blog post, I show how Kudu, a new random-access datastore, can be made to fun ...

  7. 【Linux_Unix系统编程】chapter5 深入探究文件IO

    Chapter5 深入探究文件I/O 本章节将介绍另一个与文件操作相关的系统调用:多用途的fcntl(),并展示其应用之一读取和设置打开文件的状态标志. 5.1 原子操作和竞争条件 所有系统调用都是以 ...

  8. Python3 os模块应用

    调用模块的实质是运行python代码,比如a.py文件里有函数f(),那么你在调用a模块的时候,实质是运行了a模块里的函数f(),这个时候内存里就有这个函数了,可以直接用,那是不是随便一个py类型的文 ...

  9. KDD 2018 | 最佳论文:首个面向Facebook、arXiv网络图类的对抗攻击研究

    8 月 19 日至 23 日,数据挖掘顶会 KDD 2018 在英国伦敦举行,昨日大会公布了最佳论文等奖项.最佳论文来自慕尼黑工业大学的研究者,他们提出了针对图深度学习模型的对抗攻击方法,是首个在属性 ...

  10. UnicodeDecodeError: 'gbk' codec can't decode byte 0xae in position 120: illegal multibyte sequence

    UnicodeDecodeError: 'gbk' codec can't decode byte 0xae in position 120: illegal multibyte sequence f ...