VectorAssembler字段转换成特征向量

import org.apache.spark.ml.feature.VectorAssembler

val colArray = Array("age", "yearsmarried", "religiousness", "education", "occupation", "rating")

// 字段转换成特征向量
val assembler = new VectorAssembler().setInputCols(colArray).setOutputCol("features") val vecDF: DataFrame = assembler.transform(data)
vecDF: org.apache.spark.sql.DataFrame = [affairs: double, gender: string ... 8 more fields] vecDF.select("features", colArray: _*).show(10, truncate = false)
+----------------------------+----+------------+-------------+---------+----------+------+
|features |age |yearsmarried|religiousness|education|occupation|rating|
+----------------------------+----+------------+-------------+---------+----------+------+
|[37.0,10.0,3.0,18.0,7.0,4.0]|37.0|10.0 |3.0 |18.0 |7.0 |4.0 |
|[27.0,4.0,4.0,14.0,6.0,4.0] |27.0|4.0 |4.0 |14.0 |6.0 |4.0 |
|[32.0,15.0,1.0,12.0,1.0,4.0]|32.0|15.0 |1.0 |12.0 |1.0 |4.0 |
|[57.0,15.0,5.0,18.0,6.0,5.0]|57.0|15.0 |5.0 |18.0 |6.0 |5.0 |
|[22.0,0.75,2.0,17.0,6.0,3.0]|22.0|0.75 |2.0 |17.0 |6.0 |3.0 |
|[32.0,1.5,2.0,17.0,5.0,5.0] |32.0|1.5 |2.0 |17.0 |5.0 |5.0 |
|[22.0,0.75,2.0,12.0,1.0,3.0]|22.0|0.75 |2.0 |12.0 |1.0 |3.0 |
|[57.0,15.0,2.0,14.0,4.0,4.0]|57.0|15.0 |2.0 |14.0 |4.0 |4.0 |
|[32.0,15.0,4.0,16.0,1.0,2.0]|32.0|15.0 |4.0 |16.0 |1.0 |2.0 |
|[22.0,1.5,4.0,14.0,4.0,5.0] |22.0|1.5 |4.0 |14.0 |4.0 |5.0 |
+----------------------------+----+------------+-------------+---------+----------+------+
only showing top 10 rows

VectorIndexer自动识别分类的特征,并对它们进行索引

import org.apache.spark.ml.feature.VectorIndexer

val colArray = Array("age", "yearsmarried", "religiousness", "education", "occupation", "rating") 

// 自动识别分类的特征,并对它们进行索引
// 具有大于7个不同的值的特征被视为连续。
val featureIndexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.setMaxCategories(7)
.fit(vecDF) val categoricalFeatures: Set[Int] = featureIndexer.categoryMaps.keys.toSet
categoricalFeatures: Set[Int] = Set(2, 3, 4, 5) println(s"Chose ${categoricalFeatures.size} categorical features: " +
categoricalFeatures.mkString(", "))
Chose 4 categorical features: 2, 3, 4, 5 // 由此看出,当MaxCategories=7,从6个字段中识别出了4个“类别特征字段”,
// 他们的下标索引为(2, 3, 4, 5),分别对应colArray中的(2, 3, 4, 5)元素,即"religiousness", "education", "occupation", "rating"
// 为什么识别出了4个“类别特征字段”呢,请看本人博客http://www.cnblogs.com/wwxbi/p/6125363.html“统计字段中元素的个数”
// 从“统计字段中元素的个数”看出,("religiousness", "education", "occupation", "rating")这4个字段的元素个数<=7 // Create new column "indexedFeatures" with categorical values transformed to indices
val indexedData = featureIndexer.transform(vecDF)
indexedData: org.apache.spark.sql.DataFrame = [affairs: double, gender: string ... 9 more fields] val resColArray = Array("indexedFeatures", "features", "age", "yearsmarried", "religiousness", "education", "occupation", "rating")
resColArray: Array[String] = Array(indexedFeatures, features, age, yearsmarried, religiousness, education, occupation, rating) indexedData.selectExpr(resColArray: _*).show(10, truncate = false)
+---------------------------+----------------------------+----+------------+-------------+---------+----------+------+
|indexedFeatures |features |age |yearsmarried|religiousness|education|occupation|rating|
+---------------------------+----------------------------+----+------------+-------------+---------+----------+------+
|[37.0,10.0,2.0,5.0,6.0,3.0]|[37.0,10.0,3.0,18.0,7.0,4.0]|37.0|10.0 |3.0 |18.0 |7.0 |4.0 |
|[27.0,4.0,3.0,2.0,5.0,3.0] |[27.0,4.0,4.0,14.0,6.0,4.0] |27.0|4.0 |4.0 |14.0 |6.0 |4.0 |
|[32.0,15.0,0.0,1.0,0.0,3.0]|[32.0,15.0,1.0,12.0,1.0,4.0]|32.0|15.0 |1.0 |12.0 |1.0 |4.0 |
|[57.0,15.0,4.0,5.0,5.0,4.0]|[57.0,15.0,5.0,18.0,6.0,5.0]|57.0|15.0 |5.0 |18.0 |6.0 |5.0 |
|[22.0,0.75,1.0,4.0,5.0,2.0]|[22.0,0.75,2.0,17.0,6.0,3.0]|22.0|0.75 |2.0 |17.0 |6.0 |3.0 |
|[32.0,1.5,1.0,4.0,4.0,4.0] |[32.0,1.5,2.0,17.0,5.0,5.0] |32.0|1.5 |2.0 |17.0 |5.0 |5.0 |
|[22.0,0.75,1.0,1.0,0.0,2.0]|[22.0,0.75,2.0,12.0,1.0,3.0]|22.0|0.75 |2.0 |12.0 |1.0 |3.0 |
|[57.0,15.0,1.0,2.0,3.0,3.0]|[57.0,15.0,2.0,14.0,4.0,4.0]|57.0|15.0 |2.0 |14.0 |4.0 |4.0 |
|[32.0,15.0,3.0,3.0,0.0,1.0]|[32.0,15.0,4.0,16.0,1.0,2.0]|32.0|15.0 |4.0 |16.0 |1.0 |2.0 |
|[22.0,1.5,3.0,2.0,3.0,4.0] |[22.0,1.5,4.0,14.0,4.0,5.0] |22.0|1.5 |4.0 |14.0 |4.0 |5.0 |
+---------------------------+----------------------------+----+------------+-------------+---------+----------+------+
only showing top 10 rows import org.apache.spark.ml.feature.VectorSlicer val slicer = new VectorSlicer().setInputCol("indexedFeatures").setOutputCol("slicerFeatures")
slicer.setIndices(Array(3)) // 此处的3对应“索引化”之前的字段“education” val output = slicer.transform(indexedData)
output.select("indexedFeatures",
"slicerFeatures",
"education").limit(10).orderBy($"education").show(10, truncate = false)
+---------------------------+--------------+---------+
|indexedFeatures |slicerFeatures|education|
+---------------------------+--------------+---------+
|[32.0,15.0,0.0,1.0,0.0,3.0]|[1.0] |12.0 |
|[22.0,0.75,1.0,1.0,0.0,2.0]|[1.0] |12.0 |
|[27.0,4.0,3.0,2.0,5.0,3.0] |[2.0] |14.0 |
|[57.0,15.0,1.0,2.0,3.0,3.0]|[2.0] |14.0 |
|[22.0,1.5,3.0,2.0,3.0,4.0] |[2.0] |14.0 |
|[32.0,15.0,3.0,3.0,0.0,1.0]|[3.0] |16.0 |
|[32.0,1.5,1.0,4.0,4.0,4.0] |[4.0] |17.0 |
|[22.0,0.75,1.0,4.0,5.0,2.0]|[4.0] |17.0 |
|[37.0,10.0,2.0,5.0,6.0,3.0]|[5.0] |18.0 |
|[57.0,15.0,4.0,5.0,5.0,4.0]|[5.0] |18.0 |
+---------------------------+--------------+---------+
// 由此看出,“类别特征字段”被索引化后,索引的编号是跟“原字段值的大小顺序”对照的,索引从0开始
// 索引编号(0,1,2,3,4,5,6)对应[9.0, 12.0, 14.0, 16.0, 17.0, 18.0, 20.0]

VectorSlicer向量切割

import org.apache.spark.ml.feature.VectorSlicer

val colArray = Array("age", "yearsmarried", "religiousness", "education", "occupation", "rating") 

// 字段转换成特征向量
val assembler = new VectorAssembler().setInputCols(colArray).setOutputCol("features")
val vecDF = assembler.transform(data) val slicer = new VectorSlicer().setInputCol("features").setOutputCol("slicerFeatures")
// 指定“向量字段features”中的下标索引
// (2, 3, 4)分别对应字段("religiousness", "education", "occupation")
slicer.setIndices(Array(2, 3, 4)) val output = slicer.transform(vecDF)
output.select("features", "slicerFeatures","religiousness", "education", "occupation").show(10, truncate = false)
+----------------------------+--------------+-------------+---------+----------+
|features |slicerFeatures|religiousness|education|occupation|
+----------------------------+--------------+-------------+---------+----------+
|[37.0,10.0,3.0,18.0,7.0,4.0]|[3.0,18.0,7.0]|3.0 |18.0 |7.0 |
|[27.0,4.0,4.0,14.0,6.0,4.0] |[4.0,14.0,6.0]|4.0 |14.0 |6.0 |
|[32.0,15.0,1.0,12.0,1.0,4.0]|[1.0,12.0,1.0]|1.0 |12.0 |1.0 |
|[57.0,15.0,5.0,18.0,6.0,5.0]|[5.0,18.0,6.0]|5.0 |18.0 |6.0 |
|[22.0,0.75,2.0,17.0,6.0,3.0]|[2.0,17.0,6.0]|2.0 |17.0 |6.0 |
|[32.0,1.5,2.0,17.0,5.0,5.0] |[2.0,17.0,5.0]|2.0 |17.0 |5.0 |
|[22.0,0.75,2.0,12.0,1.0,3.0]|[2.0,12.0,1.0]|2.0 |12.0 |1.0 |
|[57.0,15.0,2.0,14.0,4.0,4.0]|[2.0,14.0,4.0]|2.0 |14.0 |4.0 |
|[32.0,15.0,4.0,16.0,1.0,2.0]|[4.0,16.0,1.0]|4.0 |16.0 |1.0 |
|[22.0,1.5,4.0,14.0,4.0,5.0] |[4.0,14.0,4.0]|4.0 |14.0 |4.0 |
+----------------------------+--------------+-------------+---------+----------+
only showing top 10 rows output.printSchema()
root
|-- affairs: double (nullable = false)
|-- gender: string (nullable = true)
|-- age: double (nullable = false)
|-- yearsmarried: double (nullable = false)
|-- children: string (nullable = true)
|-- religiousness: double (nullable = false)
|-- education: double (nullable = false)
|-- occupation: double (nullable = false)
|-- rating: double (nullable = false)
|-- features: vector (nullable = true)
|-- slicerFeatures: vector (nullable = true)

Bucketizer将连续数据离散化到指定的范围区间

import org.apache.spark.ml.feature.Bucketizer

// Double.NegativeInfinity:负无穷;Double.PositiveInfinity:正无穷
// 分为6个组:[负无穷,-100),[-100,-10),[-10,0),[0,10),[10,90),[90,正无穷)
val splits = Array(Double.NegativeInfinity, -100, -10, 0.0, 10, 90, Double.PositiveInfinity) val data: Array[Double] = Array(-180,-160,-100,-50,-70,-20,-8,-5,-3, 0.0, 1,3,7,10,30,60,90,100,120,150) val dataFrame = spark.createDataFrame(data.map(Tuple1.apply)).toDF("features")
dataFrame: org.apache.spark.sql.DataFrame = [features: double] val bucketizer = new Bucketizer()
.setInputCol("features")
.setOutputCol("bucketedFeatures")
.setSplits(splits) // 将原始数据转换为桶索引
val bucketedData = bucketizer.transform(dataFrame)
bucketedData: org.apache.spark.sql.DataFrame = [features: double, bucketedFeatures: double] bucketedData.show(50,truncate=false)
+--------+----------------+
|features|bucketedFeatures|
+--------+----------------+
|-180.0 |0.0 |
|-160.0 |0.0 |
|-100.0 |1.0 |
|-50.0 |1.0 |
|-70.0 |1.0 |
|-20.0 |1.0 |
|-8.0 |2.0 |
|-5.0 |2.0 |
|-3.0 |2.0 |
|0.0 |3.0 |
|1.0 |3.0 |
|3.0 |3.0 |
|7.0 |3.0 |
|10.0 |4.0 |
|30.0 |4.0 |
|60.0 |4.0 |
|90.0 |5.0 |
|100.0 |5.0 |
|120.0 |5.0 |
|150.0 |5.0 |
+--------+----------------+

Spark特征(提取,转换,选择)extracting, transforming and selecting features的更多相关文章

  1. Spark Extracting,transforming,selecting features

    Spark(3) - Extracting, transforming, selecting features 官方文档链接:https://spark.apache.org/docs/2.2.0/m ...

  2. Extracting and composing robust features with denosing autoencoders 论文

    这是一篇发表于2008年初的论文. 文章主要讲了利用 denosing autoencoder来学习 robust的中间特征..进上步,说明,利用这个方法,可以初始化神经网络的权值..这就相当于一种非 ...

  3. 【Spark篇】---Spark中Transformations转换算子

    一.前述 Spark中默认有两大类算子,Transformation(转换算子),懒执行.action算子,立即执行,有一个action算子 ,就有一个job. 通俗些来说由RDD变成RDD就是Tra ...

  4. 【转】Spark实现行列转换pivot和unpivot

    背景 做过数据清洗ETL工作的都知道,行列转换是一个常见的数据整理需求.在不同的编程语言中有不同的实现方法,比如SQL中使用case+group,或者Power BI的M语言中用拖放组件实现.今天正好 ...

  5. Spark中RDD转换成DataFrame的两种方式(分别用Java和Scala实现)

    一:准备数据源     在项目下新建一个student.txt文件,里面的内容为: ,zhangsan, ,lisi, ,wanger, ,fangliu, 二:实现 Java版: 1.首先新建一个s ...

  6. Spark之 RDD转换成DataFrame的Scala实现

    依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2. ...

  7. Android oat文件提取转换

    说明: 1.手机厂商可以修改Android源码并进行编译后再生成oat格式文件在手机上存储,比如boot-okhttp.oat,boot-framework.oat. 2.自带的apk可以调用这些模块 ...

  8. 【spark】常用转换操作:join

    join就表示内连接. 对于内链接,对于给定的两个输入数据集(k,v1)和(k,v2) 根据相同的k进行连接,最终得到(k,(v1,v2))的数据集. 示例 val arr1 = Array((&qu ...

  9. 【spark】常用转换操作:keys 、values和mapValues

    1.keys 功能: 返回所有键值对的key 示例 val list = List("hadoop","spark","hive",&quo ...

随机推荐

  1. Android开发学习笔记-GridView的动态显示

    1.添加GridItem布局文件 <?xml version="1.0" encoding="utf-8"?> <LinearLayout x ...

  2. 元素随屏幕滚动到顶部固定js效果

    网站中常见这种效果,某个广告或详情页切换tab,当屏幕向下移动时,该元素会停留在浏览器最顶部,下面ecshop模板中心教您实现js代码: 案例图: 1.首先在页面上找到该元素  加上 id =&quo ...

  3. PHPCMS V9 全站通用日期时间标签

    用PHPCMS V9 建站时,经常会用到时间标签,它是通用标签调用-日期时间格式化,适用全站. 1.日期时间格式化显示: a\标准型:{date('Y-m-d H:i:s', $rs['inputti ...

  4. PHP日期知识

    (1)date用法: date(格式,[时间]);如果没有时间参数,则使用当前时间. 格式是一个字符串,其中以下字符有特殊意义:U 替换成从一个起始时间(好象是1970年1月1日)以来的秒数 Y 替换 ...

  5. Docker技术原理

    Docker技术原理之Linux Namespace(容器隔离) https://blog.csdn.net/songcf_faith/article/details/82748987 Docker技 ...

  6. pycharm使用docker容器的python解释器,

    上一篇是pycharm调用docker的镜像的python解释器. 此篇介绍pycharm 调用docker的容器的python解释器. 这两个思路还是不一样的,第一个是用pycham界面的选择pyt ...

  7. 8 -- 深入使用Spring -- 4... Spring的AOP

    8.4 Spring的AOP AOP(Aspect Orient Programming),也就是面向切面编程,最为面向对象编程的一种补充. AOP和OOP互为补充,面向对象编程将程序分解成各个层次的 ...

  8. Resolve PSExec "Access is denied"

    PSExec拒绝访问的解决办法 Just modify Windows Registry, and reboot. psexec_fix.reg: Windows Registry Editor Ve ...

  9. Linux进程作业的查看和杀死

    引入进程 进程 线程 PS命令.TOP命令.其他查看进程命令 进程的优先级 作业控制机制 kill命令 一.引入进程 1.内存划分为:用户空间和内核空间 1.在用户空间里运行的进程,就是用户进程,所属 ...

  10. 【MacOS】brew-python3

    mkdir homebrew && curl -L https://github.com/Homebrew/brew/tarball/master | tar xz --strip 1 ...