【DeepLearning】Exercise:Self-Taught Learning
Exercise:Self-Taught Learning
习题链接:Exercise:Self-Taught Learning
feedForwardAutoencoder.m
function [activation] = feedForwardAutoencoder(theta, hiddenSize, visibleSize, data) % theta: trained weights from the autoencoder
% visibleSize: the number of input units (probably 64)
% hiddenSize: the number of hidden units (probably 25)
% data: Our matrix containing the training data as columns. So, data(:,i) is the i-th training example. % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this
% follows the notation convention of the lecture notes. W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); %% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Compute the activation of the hidden layer for the Sparse Autoencoder.
activation = sigmoid(W1 * data + repmat(b1, 1, size(data, 2))); %------------------------------------------------------------------- end %-------------------------------------------------------------------
% Here's an implementation of the sigmoid function, which you may find useful
% in your computation of the costs and the gradients. This inputs a (row or
% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). function sigm = sigmoid(x)
sigm = 1 ./ (1 + exp(-x));
end
stlExercise.m
%% CS294A/CS294W Self-taught Learning Exercise % Instructions
% ------------
%
% This file contains code that helps you get started on the
% self-taught learning. You will need to complete code in feedForwardAutoencoder.m
% You will also need to have implemented sparseAutoencoderCost.m and
% softmaxCost.m from previous exercises.
%
%% ======================================================================
% STEP : Here we provide the relevant parameters values that will
% allow your sparse autoencoder to get good filters; you do not need to
% change the parameters below. inputSize = * ;
numLabels = ;
hiddenSize = ;
sparsityParam = 0.1; % desired average activation of the hidden units.
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 3e-; % weight decay parameter
beta = ; % weight of sparsity penalty term
maxIter = ; %% ======================================================================
% STEP : Load data from the MNIST database
%
% This loads our training and test data from the MNIST database files.
% We have sorted the data for you in this so that you will not have to
% change it. % Load MNIST database files
mnistData = loadMNISTImages('mnist/train-images-idx3-ubyte');
mnistLabels = loadMNISTLabels('mnist/train-labels-idx1-ubyte'); % Set Unlabeled Set (All Images) % Simulate a Labeled and Unlabeled set
labeledSet = find(mnistLabels >= & mnistLabels <= );
unlabeledSet = find(mnistLabels >= ); numTrain = round(numel(labeledSet)/);
trainSet = labeledSet(:numTrain);
testSet = labeledSet(numTrain+:end); unlabeledData = mnistData(:, unlabeledSet); trainData = mnistData(:, trainSet);
trainLabels = mnistLabels(trainSet)' + 1; % Shift Labels to the Range 1-5 testData = mnistData(:, testSet);
testLabels = mnistLabels(testSet)' + 1; % Shift Labels to the Range 1-5 % Output Some Statistics
fprintf('# examples in unlabeled set: %d\n', size(unlabeledData, ));
fprintf('# examples in supervised training set: %d\n\n', size(trainData, ));
fprintf('# examples in supervised testing set: %d\n\n', size(testData, )); %% ======================================================================
% STEP : Train the sparse autoencoder
% This trains the sparse autoencoder on the unlabeled training
% images. % Randomly initialize the parameters
theta = initializeParameters(hiddenSize, inputSize); %% ----------------- YOUR CODE HERE ----------------------
% Find opttheta by running the sparse autoencoder on
% unlabeledTrainingImages % Use minFunc to minimize the function
addpath minFunc/
options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
% function. Generally, for minFunc to work, you
% need a function pointer with two outputs: the
% function value and the gradient. In our problem,
% sparseAutoencoderCost.m satisfies this.
options.maxIter = maxIter;% Maximum number of iterations of L-BFGS to run
options.display = 'on'; [opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
inputSize, hiddenSize, ...
lambda, sparsityParam, ...
beta, unlabeledData), ...
theta, options); %% ----------------------------------------------------- % Visualize weights
W1 = reshape(opttheta(:hiddenSize * inputSize), hiddenSize, inputSize);
display_network(W1'); %%======================================================================
%% STEP : Extract Features from the Supervised Dataset
%
% You need to complete the code in feedForwardAutoencoder.m so that the
% following command will extract features from the data. trainFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...
trainData); testFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...
testData); %%======================================================================
%% STEP : Train the softmax classifier %% ----------------- YOUR CODE HERE ----------------------
% Use softmaxTrain.m from the previous exercise to train a multi-class
% classifier. % Use lambda = 1e- for the weight regularization for softmax % You need to compute softmaxModel using softmaxTrain on trainFeatures and
% trainLabels lambda = 1e-;
options.maxIter = maxIter;
[softmaxModel] = softmaxTrain(hiddenSize, numLabels, lambda, trainFeatures, trainLabels, options); %% ----------------------------------------------------- %%======================================================================
%% STEP : Testing %% ----------------- YOUR CODE HERE ----------------------
% Compute Predictions on the test set (testFeatures) using softmaxPredict
% and softmaxModel
[pred] = softmaxPredict(softmaxModel, testFeatures); %% ----------------------------------------------------- % Classification Score
fprintf('Test Accuracy: %f%%\n', *mean(pred(:) == testLabels(:))); % (note that we shift the labels by , so that digit now corresponds to
% label )
%
% Accuracy is the proportion of correctly classified images
% The results for our implementation was:
%
% Accuracy: 98.3%
%
%
Test Accuracy: 98.208916%
【DeepLearning】Exercise:Self-Taught Learning的更多相关文章
- 【DeepLearning】Exercise:Learning color features with Sparse Autoencoders
Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with ...
- 【DeepLearning】Exercise:PCA and Whitening
Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...
- 【DeepLearning】Exercise:Softmax Regression
Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...
- 【DeepLearning】Exercise:Convolution and Pooling
Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...
- 【DeepLearning】Exercise: Implement deep networks for digit classification
Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...
- 【DeepLearning】Exercise:PCA in 2D
Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%=================================== ...
- 【DeepLearning】Exercise:Vectorization
Exercise:Vectorization 习题的链接:Exercise:Vectorization 注意点: MNIST图片的像素点已经经过归一化. 如果再使用Exercise:Sparse Au ...
- 【DeepLearning】Exercise:Sparse Autoencoder
Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...
- 【UFLDL】Exercise: Convolutional Neural Network
这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...
随机推荐
- Safari不兼容Javascript中的Date问题
在IOS5以上版本(不包含IOS5)中的Safari浏览器能正确解释出Javascript中的 new Date('2013-10-21') 的日期对象,但是在IOS5版本里面的Safari解释new ...
- [React] Asynchronously Load webpack Bundles through Code-splitting and React Suspense
One approach to building high performance applications with webpack is to take advantage of code-spl ...
- C++缓冲区溢出
测试代码: #include <stdlib.h> #include <string.h> #include <stdio.h> int main() { ] =& ...
- SpringBoot 启动错误搜集
Spring Boot:The Bean Validation API is on the classpath but no implementation could be found https:/ ...
- Word 之 清除页眉下划线
在应用 Word 的时候,有时我们需要为文件添加页眉,但是首页却不需要.这时一般都会勾选“ 首页不同 ”并关闭页眉页脚.一种情况页眉不显示任何信息及下划线,另一种情况页眉留有下划线.以下针对第二种情况 ...
- Java中监控文件变化的多种方案
一.使用Apache.Common.io库 package yungoal.huafeng.utils.files; import com.sun.deploy.util.SyncFileAccess ...
- JAVA设计模式——第 7 章 门面模式【Facade Pattern】(转)
好,我们继续讲课.大家都是高智商的人,都写过纸质的信件吧,比如给女朋友写情书什么的,写信的过程大家都还记得吧,先写信的内容,然后写信封,然后把信放到信封中,封好,投递到信箱中进行邮递,这个过程还是比较 ...
- Linux文件系统操作
1:查看磁盘使用情况 df [-选项] 目录名 2:查看目录下文件大小 du 目录名称 3:实体链接 创建inode产生一个新文件名,链接到一个已有的文件. 限制:不能垮文件系统进行实体链接:不能链接 ...
- Maven项目目录结构与自动创建maven目录
Maven项目有特定的目录结构: 如图,我们在创建一个maven工程时,在项目根目录下有三大内容:main.test.pom.xml. 其中:main文件夹下是项目的主要源代码,按照包路径来存放 te ...
- 7、redis之使用spring集成commons-pool来操作常见数据类型
环境的搭建参见:http://www.cnblogs.com/yangzhilong/p/4729857.html 下面直接贴具体的测试代码: package com.yzl; import java ...