分布式系统里的Shuffle 阶段往往是非常复杂的,而且分支条件也多,我只能按着我关注的线去描述。肯定会有不少谬误之处,我会根据自己理解的深入,不断更新这篇文章。

前言

借用和董神的一段对话说下背景:

shuffle共有三种,别人讨论的是hash shuffle,这是最原始的实现,曾经有两个版本,第一版是每个map产生r个文件,一共产生mr个文件,由于产生的中间文件太大影响扩展性,社区提出了第二个优化版本,让一个core上map共用文件,减少文件数目,这样共产生corer个文件,好多了,但中间文件数目仍随任务数线性增加,仍难以应对大作业,但hash shuffle已经优化到头了。为了解决hash shuffle性能差的问题,又引入sort shuffle,完全借鉴mapreduce实现,每个map产生一个文件,彻底解决了扩展性问题

目前Sort Based Shuffle 是作为默认Shuffle类型的。Shuffle 是一个很复杂的过程,任何一个环节都足够写一篇文章。所以这里,我尝试换个方式,从实用的角度出发,让读者有两方面的收获:

  1. 剖析哪些环节,哪些代码可能会让内存产生问题
  2. 控制相关内存的参数

有时候,我们宁可程序慢点,也不要OOM,至少要先跑步起来,希望这篇文章能够让你达成这个目标。

同时我们会提及一些类名,这些类方便你自己想更深入了解时,可以方便的找到他们,自己去探个究竟。

Shuffle 概览

Spark 的Shuffle 分为 Write,Read 两阶段。我们预先建立三个概念:

  • Write 对应的是ShuffleMapTask,具体的写操作ExternalSorter来负责

  • Read 阶段由ShuffleRDD里的HashShuffleReader来完成。如果拉来的数据如果过大,需要落地,则也由ExternalSorter来完成的

  • 所有Write 写完后,才会执行Read。 他们被分成了两个不同的Stage阶段。

也就是说,Shuffle Write ,Shuffle Read 两阶段都可能需要落磁盘,并且通过Disk Merge 来完成最后的Sort归并排序。

Shuffle Write 内存消耗分析

Shuffle Write 的入口链路为:

org.apache.spark.scheduler.ShuffleMapTask
---> org.apache.spark.shuffle.sort.SortShuffleWriter
---> org.apache.spark.util.collection.ExternalSorter

会产生内存瓶颈的其实就是 org.apache.spark.util.collection.ExternalSorter。我们看看这个复杂的ExternalSorter都有哪些地方在占用内存:

第一个地:

private var map = new PartitionedAppendOnlyMap[K, C]

我们知道,数据都是先写内存,内存不够了,才写磁盘。这里的map就是那个放数据的内存了。

这个PartitionedAppendOnlyMap内部维持了一个数组,是这样的:

private var data = new Array[AnyRef]( * capacity)

也就是他消耗的并不是Storage的内存,所谓Storage内存,指的是由blockManager管理起来的内存。

PartitionedAppendOnlyMap 放不下,要落地,那么不能硬生生的写磁盘,所以需要个buffer,然后把buffer再一次性写入磁盘文件。这个buffer是由参数

spark.shuffle.file.buffer=32k

控制的。数据获取的过程中,序列化反序列化,也是需要空间的,所以Spark 对数量做了限制,通过如下参数控制:

spark.shuffle.spill.batchSize=

假设一个Executor的可使用的Core为 C个,那么对应需要的内存消耗为:

 C * 32k + C * 10000个Record + C * PartitionedAppendOnlyMap

这么看来,写文件的buffer不是问题,而序列化的batchSize也不是问题,几万或者十几万个Record 而已。那C * PartitionedAppendOnlyMap 到底会有多大呢?我先给个结论:

  C * PartitionedAppendOnlyMap < ExecutorHeapMemeory * 0.2 * 0.8 

怎么得到上面的结论呢?核心店就是要判定PartitionedAppendOnlyMap 需要占用多少内存,而它到底能占用内存,则由触发写磁盘动作决定,因为一旦写磁盘,PartitionedAppendOnlyMap所占有的内存就会被释放。下面是判断是否写磁盘的逻辑代码:

 estimatedSize = map.estimateSize()
if (maybeSpill(map, estimatedSize)) {
map = new PartitionedAppendOnlyMap[K, C]
}

每放一条记录,就会做一次内存的检查,看PartitionedAppendOnlyMap 到底占用了多少内存。如果真是这样,假设检查一次内存1ms, 1kw 就不得了的时间了。所以肯定是不行的,所以 estimateSize其实是使用采样算法来做的。

第二个,我们也不希望mayBeSpill太耗时,所以 maybeSpill 方法里就搞了很多东西,减少耗时。我们看看都设置了哪些防线

首先会判定要不要执行内部逻辑:

elementsRead %  ==  && currentMemory >= myMemoryThreshold

每隔32次会进行一次检查,并且要当前PartitionedAppendOnlyMap currentMemory > myMemoryThreshold 才会进一步判定是不是要spill.

其中 myMemoryThreshold可通过如下配置获得初始值

spark.shuffle.spill.initialMemoryThreshold =   *  * 

接着会向 shuffleMemoryManager 要 2 * currentMemory - myMemoryThreshold 的内存,shuffleMemoryManager 是被Executor 所有正在运行的Task(Core) 共享的,能够分配出去的内存是:

ExecutorHeapMemeory * 0.2 * 0.8 

上面的数字可通过下面两个配置来更改:

spark.shuffle.memoryFraction=0.2
spark.shuffle.safetyFraction=0.8

如果无法获取到足够的内存,就会触发真的spill操作了。

看到这里,上面的结论就显而易见了。

然而,这里我们忽略了一个很大的问题,就是

 estimatedSize = map.estimateSize()

为什么说它是大问题,前面我们说了,estimateSize 是近似估计,所以有可能估的不准,也就是实际内存会远远超过预期。

具体的大家可以看看 org.apache.spark.util.collection.SizeTracker

我这里给出一个结论:

如果你内存开的比较大,其实反倒风险更高,因为estimateSize 并不是每次都去真实的算缓存。它是通过采样来完成的,而采样的周期不是固定的,而是指数增长的,比如第一次采样完后,PartitionedAppendOnlyMap 要经过1.1次的update/insert操作之后才进行第二次采样,然后经过1.1*.1.1次之后进行第三次采样,以此递推,假设你内存开的大,那PartitionedAppendOnlyMap可能要经过几十万次更新之后之后才会进行一次采样,然后才能计算出新的大小,这个时候几十万次更新带来的新的内存压力,可能已经让你的GC不堪重负了。

当然,这是一种折中,因为确实不能频繁采样。

如果你不想出现这种问题,要么自己替换实现这个类,要么将

spark.shuffle.safetyFraction=0.8 

设置的更小一些。

Shuffle Read 内存消耗分析

Shuffle Read 的入口链路为:

org.apache.spark.rdd.ShuffledRDD
---> org.apache.spark.shuffle.sort.HashShuffleReader
---> org.apache.spark.util.collection.ExternalAppendOnlyMap
---> org.apache.spark.util.collection.ExternalSorter

Shuffle Read 会更复杂些,尤其是从各个节点拉取数据。但这块不是不是我们的重点。按流程,主要有:

  1. 获取待拉取数据的迭代器
  2. 使用AppendOnlyMap/ExternalAppendOnlyMap 做combine
  3. 如果需要对key排序,则使用ExternalSorter

其中1后续会单独列出文章。3我们在write阶段已经讨论过。所以这里重点是第二个步骤,combine阶段。

如果你开启了

spark.shuffle.spill=true

则使用ExternalAppendOnlyMap,否则使用AppendOnlyMap。两者的区别是,前者如果内存不够,则落磁盘,会发生spill操作,后者如果内存不够,直接OOM了。

这里我们会重点分析ExternalAppendOnlyMap。

ExternalAppendOnlyMap 作为内存缓冲数据的对象如下:

 private var currentMap = new SizeTrackingAppendOnlyMap[K, C]

如果currentMap 对象向申请不到内存,就会触发spill动作。判定内存是否充足的逻辑和Shuffle Write 完全一致。

Combine做完之后,ExternalAppendOnlyMap 会返回一个Iterator,叫做ExternalIterator,这个Iterator背后的数据源是所有spill文件以及当前currentMap里的数据。

我们进去 ExternalIterator 看看,唯一的一个占用内存的对象是这个优先队列:

   private val mergeHeap = new mutable.PriorityQueue[StreamBuffer]

mergeHeap 里元素数量等于所有spill文件个数加一。StreamBuffer 的结构:

private class StreamBuffer(
val iterator: BufferedIterator[(K, C)],
val pairs: ArrayBuffer[(K, C)])

其中iterator 只是一个对象引用,pairs 应该保存的是iterator里的第一个元素(如果hash有冲突的话,则为多个)

所以mergeHeap 应该不占用什么内存。到这里我们看看应该占用多少内存。依然假设 CoreNum 为 C,则

  C * 32k + C  * mergeHeap  + C * SizeTrackingAppendOnlyMap  

所以这一段占用内存较大的依然是 SizeTrackingAppendOnlyMap ,一样的,他的值也符合如下公式

 C * SizeTrackingAppendOnlyMap < ExecutorHeapMemeory * 0.2 * 0.8

ExternalAppendOnlyMap 的目的是做Combine,然后如果你还设置了Order,那么接着会启用 ExternalSorter 来完成排序。

经过上文对Shuffle Write的使用,相比大家也对ExternalSorter有一定的了解了,此时应该占用内存的地方最大不超过下面的这个值:

 C * SizeTrackingAppendOnlyMap  + C * PartitionedAppendOnlyMap

不过即使如此,因为他们共享一个shuffleMemoryManager,则理论上只有这么大:

 C * SizeTrackingAppendOnlyMap <  ExecutorHeapMemeory * 0.2 * 0.8

分析到这里,我们可以做个总结:

  1. Shuffle Read阶段如果内存不足,有两个阶段会落磁盘,分别是Combine 和 Sort 阶段。对应的都会spill小文件,并且产生读。
  2. Shuffle Read 阶段如果开启了spill功能,则基本能保证内存控制在 ExecutorHeapMemeory * 0.2 * 0.8 之内。

Spark Sort Based Shuffle内存分析的更多相关文章

  1. Spark技术内幕:Sort Based Shuffle实现解析

    在Spark 1.2.0中,Spark Core的一个重要的升级就是将默认的Hash Based Shuffle换成了Sort Based Shuffle,即spark.shuffle.manager ...

  2. Spark-1.6.0中的Sort Based Shuffle源码解读

    从Spark-1.2.0开始,Spark的Shuffle由Hash Based Shuffle升级成了Sort Based Shuffle.即Spark.shuffle.manager从Hash换成了 ...

  3. Spark技术内幕: Shuffle详解(一)

    通过上面一系列文章,我们知道在集群启动时,在Standalone模式下,Worker会向Master注册,使得Master可以感知进而管理整个集群:Master通过借助ZK,可以简单的实现HA:而应用 ...

  4. Spark Tungsten揭秘 Day2 Tungsten-sort Based Shuffle

    Spark Tungsten揭秘 Day2 Tungsten-sort Based Shuffle 今天在对钨丝计划思考的基础上,讲解下基于Tungsten的shuffle. 首先解释下概念,Tung ...

  5. 浅析 Spark Shuffle 内存使用

    在使用 Spark 进行计算时,我们经常会碰到作业 (Job) Out Of Memory(OOM) 的情况,而且很大一部分情况是发生在 Shuffle 阶段.那么在 Spark Shuffle 中具 ...

  6. Spark内核| 调度策略| SparkShuffle| 内存管理| 内存空间分配| 核心组件

    1. 调度策略 TaskScheduler会先把DAGScheduler给过来的TaskSet封装成TaskSetManager扔到任务队列里,然后再从任务队列里按照一定的规则把它们取出来在Sched ...

  7. Apache 流框架 Flink,Spark Streaming,Storm对比分析(一)

    本文由  网易云发布. 1.Flink架构及特性分析 Flink是个相当早的项目,开始于2008年,但只在最近才得到注意.Flink是原生的流处理系统,提供high level的API.Flink也提 ...

  8. spark性能调优(二) 彻底解密spark的Hash Shuffle

    装载:http://www.cnblogs.com/jcchoiling/p/6431969.html 引言 Spark HashShuffle 是它以前的版本,现在1.6x 版本默应是 Sort-B ...

  9. Spark SQL慕课网日志分析(1)--系列软件(单机)安装配置使用

    来源: 慕课网 Spark SQL慕课网日志分析_大数据实战 目标: spark系列软件的伪分布式的安装.配置.编译 spark的使用 系统: mac 10.13.3 /ubuntu 16.06,两个 ...

随机推荐

  1. 浏览器解析html全过程详解

    前端文摘:深入解析浏览器的幕后工作原理 关于浏览器解析html全过程详解 输入URL到浏览器接收返回的数据的整个过程 TCP报文格式详解 IP报文格式详解 Linux IO模式及 select.pol ...

  2. CSS-筛选 获取第一个td

    tr td:first-child{ font-weight:bold; } 看样子,应该是jquery中有些筛选,css也是能够同样进行筛选的,只是模式有些可能不同 a[data-toggle*=' ...

  3. Nginx七层反向代理和负载均衡

    1.介绍 1.1 Nginx不仅是一个出色的web软件,其七层代理和负载均衡也是相当出色.Nginx做前端代理,当用户请求服务时,可以根据url进行判断,然后分配到不同的后台webserver上. 1 ...

  4. php判断正常访问和外部访问

    php判断正常访问和外部访问 <?php session_start(); if(isset($_POST['check'])&&!empty($_POST['name'])){ ...

  5. 【大数据系列】HDFS安全模式

    一.什么是安全模式 安全模式时HDFS所处的一种特殊状态,在这种状态下,文件系统只接受读数据请求,而不接受删除.修改等变更请求.在NameNode主节点启动时,HDFS首先进入安全模式,DataNod ...

  6. android include标签的使用,在RelativeLayout中使用include标签需注意!!!!!

    转:http://4265337.blog.163.com/blog/static/195375820127935731114/ include和merge标记的作用主要是为了解决layout的重用问 ...

  7. linux中删除文件名称乱码

    在最近的操作中发现一些上传的文件有乱码,更改几次都无法正常转换到中文.下面给出正确的解决方案: 使用 ls -i 或者 ls -inum 查找出文件id号(红色字体) [root@localhost ...

  8. python编码问题总结

    最近利用python抓取一些网上的数据,遇到了编码的问题.非常头痛,总结一下用到的解决方案. linux中vim下查看文件编码的命令 set fileencoding python中一个强力的编码检测 ...

  9. HTML5 Canvas 画纸飞机组件

    纸飞机模拟一个物体在规定设计轴线偏离方位. //三角形 function DrawTriangle(canvas, A, B, C) { //画个三角形,“A.B.C”是顶点 with (canvas ...

  10. python偏函数的运用

    摘要:python的设计核心原则就是简洁——在这种原则的指导下,诞生了lambda表达式和偏函数:二者都让函数调用变得简洁.本文主要为你介绍偏函数的应用. 1.为什么要使用偏函数 如果我们定义了一个函 ...