在干啥

这两天在调nrf24l01,最终还是参考正点原子的例程才调通,看芯片手册太难了

还要说啥废话

废话说到这,接下来上代码

SPI协议

spi.c

#include "spi.h"

//以下是SPI模块的初始化代码,配置成主机模式,访问SD Card/W25Q64/NRF24L01
//SPI口初始化
//这里针是对SPI2的初始化 void SPI2_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStructure; RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE );//PORTB时钟使能
RCC_APB1PeriphClockCmd( RCC_APB1Periph_SPI2, ENABLE );//SPI2时钟使能 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //PB13/14/15复用推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化GPIOB GPIO_SetBits(GPIOB,GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15); //PB13/14/15上拉 SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; //设置SPI单向或者双向的数据模式:SPI设置为双线双向全双工
SPI_InitStructure.SPI_Mode = SPI_Mode_Master; //设置SPI工作模式:设置为主SPI
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; //设置SPI的数据大小:SPI发送接收8位帧结构
SPI_InitStructure.SPI_CPOL = SPI_CPOL_High; //串行同步时钟的空闲状态为高电平
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge; //串行同步时钟的第二个跳变沿(上升或下降)数据被采样
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; //NSS信号由硬件(NSS管脚)还是软件(使用SSI位)管理:内部NSS信号有SSI位控制
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256; //定义波特率预分频的值:波特率预分频值为256 ,传输速度36M/256=140.625KHz
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; //指定数据传输从MSB位还是LSB位开始:数据传输从MSB(高位)在前
SPI_InitStructure.SPI_CRCPolynomial = 7; //CRC值计算的多项式,大于1即可
SPI_Init(SPI2, &SPI_InitStructure); //根据SPI_InitStruct中指定的参数初始化外设SPIx寄存器 SPI_Cmd(SPI2, ENABLE); //使能SPI外设 SPI2_ReadWriteByte(0xff);//启动传输(作用是维持MOSI为高电平,非必须,可去掉) } //固件库并没有提供单独设置分频系数的函数------ //SPI 速度设置函数
//SpeedSet:
//SPI_BaudRatePrescaler_2 2分频
//SPI_BaudRatePrescaler_8 8分频
//SPI_BaudRatePrescaler_16 16分频
//SPI_BaudRatePrescaler_256 256分频
void SPI2_SetSpeed(u8 SPI_BaudRatePrescaler)
{
assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_BaudRatePrescaler));
SPI2->CR1&=0XFFC7;
SPI2->CR1|=SPI_BaudRatePrescaler; //设置SPI2速度
SPI_Cmd(SPI2,ENABLE); } //SPIx 读写一个字节
//TxData:要写入的字节
//返回值:读取到的字节
u8 SPI2_ReadWriteByte(u8 TxData)
{
u8 retry=0;
while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_TXE) == RESET) //发送缓存空标志位 TXE为1表明发送缓存器为空
{
retry++;
if(retry>200)return 0;
}
SPI_I2S_SendData(SPI2, TxData); //通过外设SPIx发送一个数据
retry=0; while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET)//接受缓存非空标志位 RXNE为1表明接收缓冲器中包含有效数据
{
retry++;
if(retry>200)return 0;
}
return SPI_I2S_ReceiveData(SPI2); //返回通过SPIx最近接收的数据
}

spi.h

#ifndef __SPI_H
#define __SPI_H
#include "sys.h" void SPI2_Init(void); //初始化SPI口
void SPI2_SetSpeed(u8 SpeedSet); //设置SPI速度
u8 SPI2_ReadWriteByte(u8 TxData);//SPI总线读写一个字节 #endif

2401.c

#include "nrf2401.h"
#include "spi.h"
#include "sys.h" const u8 TX_ADDRESS[TX_ADR_WIDTH]={0x34,0x43,0x10,0x10,0x01}; //发送地址
const u8 RX_ADDRESS[RX_ADR_WIDTH]={0x34,0x43,0x10,0x10,0x01};
//初始化 24L01的IO口 void NRF24L01_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
RCC_APB2PeriphClockCmd ( RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB, ENABLE); //使能PB,G端口时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; //PA10、PB12推挽输出
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA,&GPIO_InitStructure); //初始化指定IO GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
GPIO_Init(GPIOB,&GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; //PA11输入
GPIO_Init(GPIOA,&GPIO_InitStructure); GPIO_ResetBits(GPIOA,GPIO_Pin_4|GPIO_Pin_11); //PA10,11
GPIO_ResetBits(GPIOB,GPIO_Pin_12); //PB12 SPI2_Init(); //初始化SPI
SPI_Cmd(SPI2,DISABLE); //SPI外设不使能 SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; //设置SPI单向或双向的数据模式:SPI设置为双线双向全双工
SPI_InitStructure.SPI_Mode = SPI_Mode_Master; //设置SPI工作模式: 设置为主SPI
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; //8位帧结构
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; //时钟悬空低
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; //数据捕获于第一个时钟沿
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; //NSS信号由软件控制
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_16; //定义波特率预分频的值:波特率预分频值为16
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; //MSB 位开始
SPI_InitStructure.SPI_CRCPolynomial = 7; //CRC值计算的多项式
SPI_Init(SPI2,&SPI_InitStructure); //根据指定的参数初始化外设SPIx SPI_Cmd(SPI2,ENABLE); //使能SPI外设
NRF24L01_CE=0; //使能24L01
NRF24L01_CSN=1; //SPI片选取消 } //检测24L01是否存在
//返回值:0,成功;1,失败
u8 NRF24L01_Check(void)
{
u8 buf[5]={0XA5,0XA5,0XA5,0XA5,0XA5};
u8 i;
SPI2_SetSpeed(SPI_BaudRatePrescaler_4); //spi速度为9Mhz(24L01的最大SPI时钟为10Mhz)
NRF24L01_Write_Buf(NRF_WRITE_REG+TX_ADDR,buf,5);//写入5个字节的地址.
NRF24L01_Read_Buf(TX_ADDR,buf,5); //读出写入的地址
for(i=0;i<5;i++)if(buf[i]!=0XA5)break;
if(i!=5)return 1;//检测24L01错误
return 0; //检测到24L01
}
//SPI写寄存器
//reg:指定寄存器地址
//value:写入的值
u8 NRF24L01_Write_Reg(u8 reg,u8 value)
{
u8 status;
NRF24L01_CSN=0; //使能SPI传输
status =SPI2_ReadWriteByte(reg);//发送寄存器号
SPI2_ReadWriteByte(value); //写入寄存器的值
NRF24L01_CSN=1; //禁止SPI传输
return(status); //返回状态值
}
//读取SPI寄存器值
//reg:要读的寄存器
u8 NRF24L01_Read_Reg(u8 reg)
{
u8 reg_val;
NRF24L01_CSN = 0; //使能SPI传输
SPI2_ReadWriteByte(reg); //发送寄存器号
reg_val=SPI2_ReadWriteByte(0XFF);//读取寄存器内容
NRF24L01_CSN = 1; //禁止SPI传输
return(reg_val); //返回状态值
}
//在指定位置读出指定长度的数据
//reg:寄存器(位置)
//*pBuf:数据指针
//len:数据长度
//返回值,此次读到的状态寄存器值
u8 NRF24L01_Read_Buf(u8 reg,u8 *pBuf,u8 len)
{
u8 status,u8_ctr;
NRF24L01_CSN = 0; //使能SPI传输
status=SPI2_ReadWriteByte(reg);//发送寄存器值(位置),并读取状态值
for(u8_ctr=0;u8_ctr<len;u8_ctr++)pBuf[u8_ctr]=SPI2_ReadWriteByte(0XFF);//读出数据
NRF24L01_CSN=1; //关闭SPI传输
return status; //返回读到的状态值
}
//在指定位置写指定长度的数据
//reg:寄存器(位置)
//*pBuf:数据指针
//len:数据长度
//返回值,此次读到的状态寄存器值
u8 NRF24L01_Write_Buf(u8 reg, u8 *pBuf, u8 len)
{
u8 status,u8_ctr;
NRF24L01_CSN = 0; //使能SPI传输
status = SPI2_ReadWriteByte(reg);//发送寄存器值(位置),并读取状态值
for(u8_ctr=0; u8_ctr<len; u8_ctr++)SPI2_ReadWriteByte(*pBuf++); //写入数据
NRF24L01_CSN = 1; //关闭SPI传输
return status; //返回读到的状态值
}
//启动NRF24L01发送一次数据
//txbuf:待发送数据首地址
//返回值:发送完成状况
u8 NRF24L01_TxPacket(u8 *txbuf)
{
u8 sta;
SPI2_SetSpeed(SPI_BaudRatePrescaler_8);//spi速度为9Mhz(24L01的最大SPI时钟为10Mhz)
NRF24L01_CE=0;
NRF24L01_Write_Buf(WR_TX_PLOAD,txbuf,TX_PLOAD_WIDTH);//写数据到TX BUF 32个字节
NRF24L01_CE=1;//启动发送
while(NRF24L01_IRQ!=0);//等待发送完成
sta=NRF24L01_Read_Reg(STATUS); //读取状态寄存器的值
NRF24L01_Write_Reg(NRF_WRITE_REG+STATUS,sta); //清除TX_DS或MAX_RT中断标志
if(sta&MAX_TX)//达到最大重发次数
{
NRF24L01_Write_Reg(FLUSH_TX,0xff);//清除TX FIFO寄存器
return MAX_TX;
}
if(sta&TX_OK)//发送完成
{
return TX_OK;
}
return 0xff;//其他原因发送失败
}
//启动NRF24L01发送一次数据
//txbuf:待发送数据首地址
//返回值:0,接收完成;其他,错误代码
u8 NRF24L01_RxPacket(u8 *rxbuf)
{
u8 sta;
SPI2_SetSpeed(SPI_BaudRatePrescaler_8); //spi速度为9Mhz(24L01的最大SPI时钟为10Mhz)
sta=NRF24L01_Read_Reg(STATUS); //读取状态寄存器的值
NRF24L01_Write_Reg(NRF_WRITE_REG+STATUS,sta); //清除TX_DS或MAX_RT中断标志
if(sta&RX_OK)//接收到数据
{
NRF24L01_Read_Buf(RD_RX_PLOAD,rxbuf,RX_PLOAD_WIDTH);//读取数据
NRF24L01_Write_Reg(FLUSH_RX,0xff);//清除RX FIFO寄存器
return 0;
}
return 1;//没收到任何数据
}
//该函数初始化NRF24L01到RX模式
//设置RX地址,写RX数据宽度,选择RF频道,波特率和LNA HCURR
//当CE变高后,即进入RX模式,并可以接收数据了
void NRF24L01_RX_Mode(void)
{
NRF24L01_CE=0;
NRF24L01_Write_Buf(NRF_WRITE_REG+RX_ADDR_P0,(u8*)RX_ADDRESS,RX_ADR_WIDTH);//写RX节点地址 NRF24L01_Write_Reg(NRF_WRITE_REG+EN_AA,0x01); //使能通道0的自动应答
NRF24L01_Write_Reg(NRF_WRITE_REG+EN_RXADDR,0x01);//使能通道0的接收地址
NRF24L01_Write_Reg(NRF_WRITE_REG+RF_CH,40); //设置RF通信频率
NRF24L01_Write_Reg(NRF_WRITE_REG+RX_PW_P0,RX_PLOAD_WIDTH);//选择通道0的有效数据宽度
NRF24L01_Write_Reg(NRF_WRITE_REG+RF_SETUP,0x0f);//设置TX发射参数,0db增益,2Mbps,低噪声增益开启
NRF24L01_Write_Reg(NRF_WRITE_REG+CONFIG, 0x0f);//配置基本工作模式的参数;PWR_UP,EN_CRC,16BIT_CRC,接收模式
NRF24L01_CE = 1; //CE为高,进入接收模式
}
//该函数初始化NRF24L01到TX模式
//设置TX地址,写TX数据宽度,设置RX自动应答的地址,填充TX发送数据,选择RF频道,波特率和LNA HCURR
//PWR_UP,CRC使能
//当CE变高后,即进入RX模式,并可以接收数据了
//CE为高大于10us,则启动发送.
void NRF24L01_TX_Mode(void)
{
NRF24L01_CE=0;
NRF24L01_Write_Buf(NRF_WRITE_REG+TX_ADDR,(u8*)TX_ADDRESS,TX_ADR_WIDTH);//写TX节点地址
NRF24L01_Write_Buf(NRF_WRITE_REG+RX_ADDR_P0,(u8*)RX_ADDRESS,RX_ADR_WIDTH); //设置TX节点地址,主要为了使能ACK NRF24L01_Write_Reg(NRF_WRITE_REG+EN_AA,0x01); //使能通道0的自动应答
NRF24L01_Write_Reg(NRF_WRITE_REG+EN_RXADDR,0x01); //使能通道0的接收地址
NRF24L01_Write_Reg(NRF_WRITE_REG+SETUP_RETR,0x1a);//设置自动重发间隔时间:500us + 86us;最大自动重发次数:10次
NRF24L01_Write_Reg(NRF_WRITE_REG+RF_CH,40); //设置RF通道为40
NRF24L01_Write_Reg(NRF_WRITE_REG+RF_SETUP,0x0f); //设置TX发射参数,0db增益,2Mbps,低噪声增益开启
NRF24L01_Write_Reg(NRF_WRITE_REG+CONFIG,0x0e); //配置基本工作模式的参数;PWR_UP,EN_CRC,16BIT_CRC,接收模式,开启所有中断
NRF24L01_CE=1;//CE为高,10us后启动发送
} /*--------------------------------
改变为发送模式
---------------------------------*/
void changeModeTx(void)
{
NRF24L01_CE=0; //使能24L01
NRF24L01_CSN=1; //SPI片选取消
NRF24L01_TX_Mode();
} /*--------------------------------
改变为接收模式
---------------------------------*/
void changeModeRx(void)
{
NRF24L01_CE=0; //使能24L01
NRF24L01_CSN=1; //SPI片选取消
NRF24L01_RX_Mode();
}

2401.h

#ifndef __24L01_H
#define __24L01_H
#include "sys.h"
//pb13 14 15 SPI2_SCK SPI2_MISO SPI2_MOSI
/*
NRF24L01_CE PBout(12) //24L01片选信号
NRF24L01_CSN PAout(4) //SPI片选信号
NRF24L01_IRQ PAin(11) //IRQ主机数据输入
*/
//////////////////////////////////////////////////////////////////////////////////////////////////////////
//NRF24L01寄存器操作命令
#define NRF_READ_REG 0x00 //读配置寄存器,低5位为寄存器地址
#define NRF_WRITE_REG 0x20 //写配置寄存器,低5位为寄存器地址
#define RD_RX_PLOAD 0x61 //读RX有效数据,1~32字节
#define WR_TX_PLOAD 0xA0 //写TX有效数据,1~32字节
#define FLUSH_TX 0xE1 //清除TX FIFO寄存器.发射模式下用
#define FLUSH_RX 0xE2 //清除RX FIFO寄存器.接收模式下用
#define REUSE_TX_PL 0xE3 //重新使用上一包数据,CE为高,数据包被不断发送.
#define NOP 0xFF //空操作,可以用来读状态寄存器
//SPI(NRF24L01)寄存器地址
#define CONFIG 0x00 //配置寄存器地址;bit0:1接收模式,0发射模式;bit1:电选择;bit2:CRC模式;bit3:CRC使能;
//bit4:中断MAX_RT(达到最大重发次数中断)使能;bit5:中断TX_DS使能;bit6:中断RX_DR使能
#define EN_AA 0x01 //使能自动应答功能 bit0~5,对应通道0~5
#define EN_RXADDR 0x02 //接收地址允许,bit0~5,对应通道0~5
#define SETUP_AW 0x03 //设置地址宽度(所有数据通道):bit1,0:00,3字节;01,4字节;02,5字节;
#define SETUP_RETR 0x04 //建立自动重发;bit3:0,自动重发计数器;bit7:4,自动重发延时 250*x+86us
#define RF_CH 0x05 //RF通道,bit6:0,工作通道频率;
#define RF_SETUP 0x06 //RF寄存器;bit3:传输速率(0:1Mbps,1:2Mbps);bit2:1,发射功率;bit0:低噪声放大器增益
#define STATUS 0x07 //状态寄存器;bit0:TX FIFO满标志;bit3:1,接收数据通道号(最大:6);bit4,达到最多次重发
//bit5:数据发送完成中断;bit6:接收数据中断;
#define MAX_TX 0x10 //达到最大发送次数中断
#define TX_OK 0x20 //TX发送完成中断
#define RX_OK 0x40 //接收到数据中断 #define OBSERVE_TX 0x08 //发送检测寄存器,bit7:4,数据包丢失计数器;bit3:0,重发计数器
#define CD 0x09 //载波检测寄存器,bit0,载波检测;
#define RX_ADDR_P0 0x0A //数据通道0接收地址,最大长度5个字节,低字节在前
#define RX_ADDR_P1 0x0B //数据通道1接收地址,最大长度5个字节,低字节在前
#define RX_ADDR_P2 0x0C //数据通道2接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P3 0x0D //数据通道3接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P4 0x0E //数据通道4接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P5 0x0F //数据通道5接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define TX_ADDR 0x10 //发送地址(低字节在前),ShockBurstTM模式下,RX_ADDR_P0与此地址相等
#define RX_PW_P0 0x11 //接收数据通道0有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P1 0x12 //接收数据通道1有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P2 0x13 //接收数据通道2有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P3 0x14 //接收数据通道3有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P4 0x15 //接收数据通道4有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P5 0x16 //接收数据通道5有效数据宽度(1~32字节),设置为0则非法
#define NRF_FIFO_STATUS 0x17 //FIFO状态寄存器;bit0,RX FIFO寄存器空标志;bit1,RX FIFO满标志;bit2,3,保留
//bit4,TX FIFO空标志;bit5,TX FIFO满标志;bit6,1,循环发送上一数据包.0,不循环;
//////////////////////////////////////////////////////////////////////////////////////////////////////////
/*//24L01操作线
#define NRF24L01_CE PGout(8) //24L01片选信号
#define NRF24L01_CSN PGout(7) //SPI片选信号
#define NRF24L01_IRQ PGin(6) //IRQ主机数据输入
*/
//24L01操作线
#define NRF24L01_CE PBout(12) //24L01片选信号
#define NRF24L01_CSN PAout(4) //SPI片选信号
#define NRF24L01_IRQ PAin(11) //IRQ主机数据输入 //24L01发送接收数据宽度定义
#define TX_ADR_WIDTH 5 //5字节的地址宽度
#define RX_ADR_WIDTH 5 //5字节的地址宽度
#define TX_PLOAD_WIDTH 32 //32字节的用户数据宽度
#define RX_PLOAD_WIDTH 32 //32字节的用户数据宽度 void NRF24L01_Init(void); //初始化
void NRF24L01_RX_Mode(void); //配置为接收模式
void NRF24L01_TX_Mode(void); //配置为发送模式
u8 NRF24L01_Write_Buf(u8 reg, u8 *pBuf, u8 u8s);//写数据区
u8 NRF24L01_Read_Buf(u8 reg, u8 *pBuf, u8 u8s); //读数据区
u8 NRF24L01_Read_Reg(u8 reg); //读寄存器
u8 NRF24L01_Write_Reg(u8 reg, u8 value); //写寄存器
u8 NRF24L01_Check(void); //检查24L01是否存在
u8 NRF24L01_TxPacket(u8 *txbuf); //发送一个包的数据
u8 NRF24L01_RxPacket(u8 *rxbuf); //接收一个包的数据 void changeModeTx(void);
void changeModeRx(void); #endif

main_Tx.c 发送端

#include "sys.h"
#include "nrf2401.h"
#include "led.h" void MySystemInit(void){
SystemInit();
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
delay_init();
uart_init(115200);
NRF24L01_Init();
LED_GPIO_Config();
while( NRF24L01_Check()) //检查NRF24L01
{
printf("error");
delay_ms(100);
} } u16 t=0;
u8 key;
u8 mode;
u8 tmp_buf[33]="fuck";
//char * k;
void TX(void)
{ if(NRF24L01_TxPacket(tmp_buf)==TX_OK)
{
printf("success"); tmp_buf[32]=0;//加入结束符 }else
{
printf("failed"); }; delay_ms(1500);
} int main(){ MySystemInit();
NRF24L01_TX_Mode();
mode=' ';//从空格键开始
//changeModeTx();
while(1){ TX();
}
}

main_RX.c 接收端

#include "sys.h"
#include "nrf2401.h" u8 MSG_RX_BUF[33]; void MySystemInit(void){
SystemInit();
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
delay_init();
uart_init(115200);
NRF24L01_Init();
while( NRF24L01_Check()) //检查NRF24L01
{
printf("error");
delay_ms(100);
} } u16 t=0;
u8 key;
u8 mode;
u8 tmp_buf[33];
char Display[80];
char * dis;
void RX(void)
{ if(NRF24L01_RxPacket(tmp_buf)==0)//一旦接收到信息,则显示出来.
{ int i=0;
printf("Recived");
tmp_buf[32]=0;//加入字符串结束符
printf(tmp_buf); }else delay_us(100);
t++;
if(t==10000)//大约1s钟改变一次状态
{
t=0; }
} int main(){ MySystemInit();
NRF24L01_RX_Mode();
mode=' ';//从空格键开始
while(1){ RX();
}
}

NRF24L01 射频收发 使用方法的更多相关文章

  1. nRF24L01芯片控制——迈向无线的第一步

    nRF24L01芯片是一款专供单片机的射频收发芯片.工作于2.4GHz~2.5GHz ISM频段.融合了shockburst技术. 我先列出该芯片的硬件参数资料: 至于每个引脚的具体用途,可以参见技术 ...

  2. NRF24L01模块配置

    发射数据时:   (1)首先将nRF24L01配置为发射模式   (2)接着把接收节点地址TX_ADDR和有效数据TX_PLD按照时序由SPI口写入nRF24L01缓存区,TX_PLD必须在CSN为低 ...

  3. 三款SDR平台对比:HackRF,bladeRF和USRP

    这篇文章是Taylor Killian今年8月发表在自己的博客上的.他对比了三款平价的SDR平台,认为这三款产品将是未来一年中最受欢迎的SDR平台.我觉得这篇文章很有参考价值,简单翻译一份转过来.原文 ...

  4. CrazePony飞行器--通信部分介绍【转】

    转自:http://www.crazepony.com/wiki/comm-protocol.html 作者:nieyong 通信协议指的是遥控端和主控之间交互数据的封装,是一种自行约定的数据封装格式 ...

  5. 拥抱ARM妹子 序章!ARM妹子~~ 哥我来啦!

    一个负心汉即将移情别恋,从51转到ARM妹子啦?其实8是的,俺准备开后宫.哇——咔~咔~~.考虑功耗和成本等问题,只有51肯定是不够的,所以嘛~~(一脸坏笑)嘿嘿~~,ARM妹子俺追定了.出于对ARM ...

  6. 不同Mesh技术的比较-总结版

    引言 在过去的几年里,Mesh 网络逐渐变得流行,随之会有越来越多的无线产品面世.Mesh 网络技术作为一种无线自组网技术是物联网的核心技术.物联网的概念现在也逐渐贴近人们的生活, 据预测 2011 ...

  7. 课程设计个人报告——基于ARM实验箱的Android交友软件的设计与实现

    个人贡献 熟悉试验箱各元件功能以及连接组装试验箱 一.实验内容 研究实验箱串口.USB线的调通连接 二.实践步骤 1.打开实验箱,首先了解各元件功能 这个是LTE模块,也叫4G模块,具体的作用是硬件将 ...

  8. [转载]三款SDR平台对比:HackRF,bladeRF和USRP

    这篇文章是 Taylor Killian 13年8月发表在自己的博客上的.他对比了三款平价的SDR平台,认为这三款产品将是未来一年中最受欢迎的SDR平台.我觉得这篇文章很有参考价值,简单翻译一份转过来 ...

  9. 8个问题全面了解5G关键技术Massive MIMO

    1 什么是Massive MIMO Massive MIMO(大规模天线技术,亦称为Large Scale MIMO)是第五代移动通信(5G)中提高系统容量和频谱利用率的关键技术.它最早由美国贝尔实验 ...

随机推荐

  1. 划分LUN

    划分LUN http://mp.weixin.qq.com/s?__biz=MzAwNzU3NzQ0MA==&mid=209842199&idx=1&sn=7d77fdf7a8 ...

  2. 【剑指offer】变态跳台阶

    一.题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.思路: f(n)=f(n-1)+f(n-2)+...+f(0),f(1) ...

  3. [py]python多态-动态语言的鸭子类型

    弱类型?强类型?动态语言,静态语言 弱类型: 在程序运行过程中,类型可变 还有一种说法: 动态 variables must necessarily be defined before they ar ...

  4. android studio 3.0 安装配置

    1.  安装jdk1.8 2.复制android sdk  设置代理  mirrors.neusoft.edu.cn  端口 80 http代理  更新sdk  安装  android support ...

  5. map() 方法

    1. 方法概述 map() 方法返回一个由原数组中的每个元素调用一个指定方法后的返回值组成的新数组. 2. 例子 2.1 在字符串中使用map 在一个 String 上使用 map 方法获取字符串中每 ...

  6. mysql导入数据方法和报错解决

    mysql -u root -p databasename < db.sql 数据库导入数据时,MySQL收到下面异常:ERROR 1153 (08S01): Got a packet bigg ...

  7. PTA 团体程序设计天梯赛 L3-020 至多删三个字符

    $f[i][j]$表示到第$i$个字符,已经删去了$j$个字符的方案数. 显然的转移: $f[i][j] = f[i - 1][j] + f[i - 1][j - 1]$ 但是这样会有重复,我们考虑什 ...

  8. Hive 常用语句(持续更新中)

    1)按包含关键字在指定库中查找表名:show tables in dw '*_fab_*';   2)查看和删除自己hdfs系统所用的空间和文件(与shell命令合用):hive命令行下: --查看仓 ...

  9. centos7源码编译安装Subversion 1.9.5

    svn是Subversion的简称,是一个开放源代码的版本控制系统.svn有两种运行方式:1.独立服务器(svn://xxx.xxx/xxx) 2.借助apache(http://svn.xxx.xx ...

  10. Linux服务器配置---安装telnet

    安装telnet      telnet是标准的远程登录协议,历史悠久.但是telnet的对话数据没有加密,甚至用户名和密码都是明文显示,这样的服务风险极大.目前大多数系统多已经不会再安装这个服务了, ...