Codeforces Beta Round #17 A.素数相关
Nick is interested in prime numbers. Once he read about Goldbach problem. It states that every even integer greater than 2 can be expressed as the sum of two primes. That got Nick's attention and he decided to invent a problem of his own and call it Noldbach problem. Since Nick is interested only in prime numbers, Noldbach problem states that at least k prime numbers from 2 to n inclusively can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5+ 7 + 1.
Two prime numbers are called neighboring if there are no other prime numbers between them.
You are to help Nick, and find out if he is right or wrong.
The first line of the input contains two integers n (2 ≤ n ≤ 1000) and k (0 ≤ k ≤ 1000).
Output YES if at least k prime numbers from 2 to n inclusively can be expressed as it was described above. Otherwise output NO.
27 2
YES
45 7
NO
In the first sample the answer is YES since at least two numbers can be expressed as it was described (for example, 13 and 19). In the second sample the answer is NO since it is impossible to express 7 prime numbers from 2 to 45 in the desired form.
题意:问2到n间有多少个素数为两个相邻素数相加加一;
思路:暴力就好了
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
#define true ture
#define false flase
using namespace std;
#define ll __int64
#define inf 0xfffffff
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
int p[],flag[];
int prime(int n)
{
if(n<=)
return ;
if(n==)
return ;
if(n%==)
return ;
int k, upperBound=n/;
for(k=; k<=upperBound; k+=)
{
upperBound=n/k;
if(n%k==)
return ;
}
return ;
}
int main()
{
int ji=;
for(int i=;i<=;i++)
{
if(prime(i))
p[ji++]=i;
}
for(int i=;i<ji;i++)
{
int gg=p[i]+p[i-]+;
if(prime(gg))
flag[gg]=;
}
int x,y;
int ans=;
scanf("%d%d",&x,&y);
for(int i=;i<=x;i++)
if(flag[i])
ans++;
if(ans>=y)
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
return ;
}
Codeforces Beta Round #17 A.素数相关的更多相关文章
- Codeforces Beta Round #17 D. Notepad (数论 + 广义欧拉定理降幂)
Codeforces Beta Round #17 题目链接:点击我打开题目链接 大概题意: 给你 \(b\),\(n\),\(c\). 让你求:\((b)^{n-1}*(b-1)\%c\). \(2 ...
- Codeforces Beta Round #17 A - Noldbach problem 暴力
A - Noldbach problem 题面链接 http://codeforces.com/contest/17/problem/A 题面 Nick is interested in prime ...
- Codeforces Beta Round #17 C. Balance DP
C. Balance 题目链接 http://codeforces.com/contest/17/problem/C 题面 Nick likes strings very much, he likes ...
- Codeforces Beta Round #17 C. Balance (字符串计数 dp)
C. Balance time limit per test 3 seconds memory limit per test 128 megabytes input standard input ou ...
- Codeforces Beta Round #17 D.Notepad 指数循环节
D. Notepad time limit per test 2 seconds memory limit per test 64 megabytes input standard input out ...
- Codeforces Beta Round #13 C. Sequence (DP)
题目大意 给一个数列,长度不超过 5000,每次可以将其中的一个数加 1 或者减 1,问,最少需要多少次操作,才能使得这个数列单调不降 数列中每个数为 -109-109 中的一个数 做法分析 先这样考 ...
- Codeforces Beta Round #27 (Codeforces format, Div. 2)
Codeforces Beta Round #27 (Codeforces format, Div. 2) http://codeforces.com/contest/27 A #include< ...
- Codeforces Beta Round #80 (Div. 2 Only)【ABCD】
Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...
- Codeforces Beta Round #62 题解【ABCD】
Codeforces Beta Round #62 A Irrational problem 题意 f(x) = x mod p1 mod p2 mod p3 mod p4 问你[a,b]中有多少个数 ...
随机推荐
- PAT 1101 Quick Sort[一般上]
1101 Quick Sort(25 分) There is a classical process named partition in the famous quick sort algorith ...
- JavaWeb 服务启动时,在后台启动加载一个线程
JavaWeb 服务启动时,在后台启动加载一个线程. 目前,我所掌握的一共有两种方法,第一种是监听(Listener),第二种是配置随项目启动而启动的Servlet. 下面对这两种方法做一简单的介绍, ...
- css中外边距
1.内部元素设置margin等,父元素高度不能适应 .classA { height: 200px; background-color: cornflowerblue; overflow: hidde ...
- win10环境下MySql(5.7.21版本)安装过程
windows10上安装mysql(详细步骤) 2016年09月06日 08:09:34 阅读数:60405 环境:windwos 10(1511) 64bit.mysql 5.7.14 时间:201 ...
- Input消除自动记忆功能
在html里就可以直接清除了<input type="text" autocomplete="off"> input 的autocomplete属性 ...
- checkBox的使用和事件监听
直接上代码: <!DOCTYPE html> <html> <head> <title></title> </head> < ...
- 在MS SQL删除重复行的几种方法
1.如果有ID字段,就是具有唯一性的字段 delect table where id not in ( select max(id) ...
- 排序的hashmap(guava)
1.mvnrepository上搜索 guava.并引用其jar包 类似compile "com.google.guava:guava:18.0" 测试代码 Builder< ...
- VS2010/MFC编程入门之三十八(状态栏的使用详解)
上一节中鸡啄米讲了工具栏的创建.停靠与使用,本节来讲解状态栏的知识. 状态栏简介 状态栏相信大家在很多窗口中都能见到,它总是用来显示各种状态.状态栏实际上也是一个窗口,一般分为几个窗格,每个窗格分别用 ...
- uva10905
/* 很好的字符串 比较方法 很多个字符串 组成的 数字 需要最大 然后 比较 a和b 是 比较a+b 和b+a 的大小 */ #include<cstdio> #include<s ...