A. Noldbach problem

Nick is interested in prime numbers. Once he read about Goldbach problem. It states that every even integer greater than 2 can be expressed as the sum of two primes. That got Nick's attention and he decided to invent a problem of his own and call it Noldbach problem. Since Nick is interested only in prime numbers, Noldbach problem states that at least k prime numbers from 2 to n inclusively can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5+ 7 + 1.

Two prime numbers are called neighboring if there are no other prime numbers between them.

You are to help Nick, and find out if he is right or wrong.

Input

The first line of the input contains two integers n (2 ≤ n ≤ 1000) and k (0 ≤ k ≤ 1000).

Output

Output YES if at least k prime numbers from 2 to n inclusively can be expressed as it was described above. Otherwise output NO.

Examples
input
27 2
output
YES
input
45 7
output
NO
Note

In the first sample the answer is YES since at least two numbers can be expressed as it was described (for example, 13 and 19). In the second sample the answer is NO since it is impossible to express 7 prime numbers from 2 to 45 in the desired form.

题意:问2到n间有多少个素数为两个相邻素数相加加一;

思路:暴力就好了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
#define true ture
#define false flase
using namespace std;
#define ll __int64
#define inf 0xfffffff
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
int p[],flag[];
int prime(int n)
{
if(n<=)
return ;
if(n==)
return ;
if(n%==)
return ;
int k, upperBound=n/;
for(k=; k<=upperBound; k+=)
{
upperBound=n/k;
if(n%k==)
return ;
}
return ;
}
int main()
{
int ji=;
for(int i=;i<=;i++)
{
if(prime(i))
p[ji++]=i;
}
for(int i=;i<ji;i++)
{
int gg=p[i]+p[i-]+;
if(prime(gg))
flag[gg]=;
}
int x,y;
int ans=;
scanf("%d%d",&x,&y);
for(int i=;i<=x;i++)
if(flag[i])
ans++;
if(ans>=y)
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
return ;
}

Codeforces Beta Round #17 A.素数相关的更多相关文章

  1. Codeforces Beta Round #17 D. Notepad (数论 + 广义欧拉定理降幂)

    Codeforces Beta Round #17 题目链接:点击我打开题目链接 大概题意: 给你 \(b\),\(n\),\(c\). 让你求:\((b)^{n-1}*(b-1)\%c\). \(2 ...

  2. Codeforces Beta Round #17 A - Noldbach problem 暴力

    A - Noldbach problem 题面链接 http://codeforces.com/contest/17/problem/A 题面 Nick is interested in prime ...

  3. Codeforces Beta Round #17 C. Balance DP

    C. Balance 题目链接 http://codeforces.com/contest/17/problem/C 题面 Nick likes strings very much, he likes ...

  4. Codeforces Beta Round #17 C. Balance (字符串计数 dp)

    C. Balance time limit per test 3 seconds memory limit per test 128 megabytes input standard input ou ...

  5. Codeforces Beta Round #17 D.Notepad 指数循环节

    D. Notepad time limit per test 2 seconds memory limit per test 64 megabytes input standard input out ...

  6. Codeforces Beta Round #13 C. Sequence (DP)

    题目大意 给一个数列,长度不超过 5000,每次可以将其中的一个数加 1 或者减 1,问,最少需要多少次操作,才能使得这个数列单调不降 数列中每个数为 -109-109 中的一个数 做法分析 先这样考 ...

  7. Codeforces Beta Round #27 (Codeforces format, Div. 2)

    Codeforces Beta Round #27 (Codeforces format, Div. 2) http://codeforces.com/contest/27 A #include< ...

  8. Codeforces Beta Round #80 (Div. 2 Only)【ABCD】

    Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...

  9. Codeforces Beta Round #62 题解【ABCD】

    Codeforces Beta Round #62 A Irrational problem 题意 f(x) = x mod p1 mod p2 mod p3 mod p4 问你[a,b]中有多少个数 ...

随机推荐

  1. Ubuntu16.04安裝最新Nvidia驱动

    在安装完Ubuntu之后,可能通过自带驱动无法更新,一直处于无法下载状态,那么就需要通过到Nvidia官网下载驱动,手动安装了 方法/步骤 通过度娘,打开NVIDIA官网,然后在下载驱动那里找到自己的 ...

  2. hdu3339In Action(最短路+01背包)

    http://acm.sdut.edu.cn:8080/vjudge/contest/view.action?cid=259#problem/H Description Since 1945, whe ...

  3. Sublime Text3(mac)一些插件和快捷键

    Sublime Text3(mac)一些插件和快捷键 楚简约 关注 2017.02.24 17:02* 字数 1216 阅读 412评论 0喜欢 2 下载地址http://www.sublimetex ...

  4. 读书--编写高质量代码 改善C#程序的157个建议2

    重新从图书馆将这本书借出来,看一遍似乎记不住,这次打算看一点就记录点,记录下自己容易忘记的知识点,便于记住. 建议1:正确使用字符串: 1    string str1= "hellowor ...

  5. MFC CFile类读写文件详解

    CFile类提供了对文件进行打开,关闭,读,写,删除,重命名以及获取文件信息等文件操作的基本功能,足以处理任意类型的文件操作. 一个读写文件的例子: 文件I/O 虽然使用CArchive类内建的序列化 ...

  6. yii2之增加省市字段

    第一步,利用数据库迁移文件改表 修改一下迁移文件: https://bitbucket.org/ysxy/zijiu.git

  7. swift 之 as、as!、as?

    1,as使用场合(1)从派生类转换为基类,向上转型(upcasts) class Animal {} class Cat: Animal {} let cat = Cat() let animal = ...

  8. Cookie学习笔记

    1.简介 1.什么是cookie:cookie是一种能够让网站服务器把少量数据(4kb左右)存储到客户端的硬盘或内存.并且读可以取出来的一种技术. 2.当你浏览某网站时,由web服务器放置于你硬盘上的 ...

  9. jstat命令查看jvm的GC情况

    jstat命令可以查看堆内存各部分的使用量,以及加载类的数量.命令的格式如下: jstat [-命令选项] [vmid] [间隔时间/毫秒] [查询次数]  注意!!!:使用的jdk版本是jdk8. ...

  10. Azkaban 入门

    需求 实际当中经常有这些场景:每天有一个大任务,这个大任务可以分成A,B,C,D四个小任务,A,B任务之间没有依赖关系,C任务依赖A,B任务的结 果,D任务依赖C任务的结果.一般的做法是,开两个终端同 ...