A. Noldbach problem

Nick is interested in prime numbers. Once he read about Goldbach problem. It states that every even integer greater than 2 can be expressed as the sum of two primes. That got Nick's attention and he decided to invent a problem of his own and call it Noldbach problem. Since Nick is interested only in prime numbers, Noldbach problem states that at least k prime numbers from 2 to n inclusively can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5+ 7 + 1.

Two prime numbers are called neighboring if there are no other prime numbers between them.

You are to help Nick, and find out if he is right or wrong.

Input

The first line of the input contains two integers n (2 ≤ n ≤ 1000) and k (0 ≤ k ≤ 1000).

Output

Output YES if at least k prime numbers from 2 to n inclusively can be expressed as it was described above. Otherwise output NO.

Examples
input
27 2
output
YES
input
45 7
output
NO
Note

In the first sample the answer is YES since at least two numbers can be expressed as it was described (for example, 13 and 19). In the second sample the answer is NO since it is impossible to express 7 prime numbers from 2 to 45 in the desired form.

题意:问2到n间有多少个素数为两个相邻素数相加加一;

思路:暴力就好了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
#define true ture
#define false flase
using namespace std;
#define ll __int64
#define inf 0xfffffff
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
int p[],flag[];
int prime(int n)
{
if(n<=)
return ;
if(n==)
return ;
if(n%==)
return ;
int k, upperBound=n/;
for(k=; k<=upperBound; k+=)
{
upperBound=n/k;
if(n%k==)
return ;
}
return ;
}
int main()
{
int ji=;
for(int i=;i<=;i++)
{
if(prime(i))
p[ji++]=i;
}
for(int i=;i<ji;i++)
{
int gg=p[i]+p[i-]+;
if(prime(gg))
flag[gg]=;
}
int x,y;
int ans=;
scanf("%d%d",&x,&y);
for(int i=;i<=x;i++)
if(flag[i])
ans++;
if(ans>=y)
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
return ;
}

Codeforces Beta Round #17 A.素数相关的更多相关文章

  1. Codeforces Beta Round #17 D. Notepad (数论 + 广义欧拉定理降幂)

    Codeforces Beta Round #17 题目链接:点击我打开题目链接 大概题意: 给你 \(b\),\(n\),\(c\). 让你求:\((b)^{n-1}*(b-1)\%c\). \(2 ...

  2. Codeforces Beta Round #17 A - Noldbach problem 暴力

    A - Noldbach problem 题面链接 http://codeforces.com/contest/17/problem/A 题面 Nick is interested in prime ...

  3. Codeforces Beta Round #17 C. Balance DP

    C. Balance 题目链接 http://codeforces.com/contest/17/problem/C 题面 Nick likes strings very much, he likes ...

  4. Codeforces Beta Round #17 C. Balance (字符串计数 dp)

    C. Balance time limit per test 3 seconds memory limit per test 128 megabytes input standard input ou ...

  5. Codeforces Beta Round #17 D.Notepad 指数循环节

    D. Notepad time limit per test 2 seconds memory limit per test 64 megabytes input standard input out ...

  6. Codeforces Beta Round #13 C. Sequence (DP)

    题目大意 给一个数列,长度不超过 5000,每次可以将其中的一个数加 1 或者减 1,问,最少需要多少次操作,才能使得这个数列单调不降 数列中每个数为 -109-109 中的一个数 做法分析 先这样考 ...

  7. Codeforces Beta Round #27 (Codeforces format, Div. 2)

    Codeforces Beta Round #27 (Codeforces format, Div. 2) http://codeforces.com/contest/27 A #include< ...

  8. Codeforces Beta Round #80 (Div. 2 Only)【ABCD】

    Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...

  9. Codeforces Beta Round #62 题解【ABCD】

    Codeforces Beta Round #62 A Irrational problem 题意 f(x) = x mod p1 mod p2 mod p3 mod p4 问你[a,b]中有多少个数 ...

随机推荐

  1. Linux学习网站推荐

    最近想重新拾起Linux,发现了实验楼这个网站:https://www.shiyanlou.com/,可以通过这个网站学习Linux以及其他一些知识,可以直接学习直接动手操作,比较方便.

  2. [LeetCode] 724. Find Pivot Index_Easy tag: Dynamic Programming

    Given an array of integers nums, write a method that returns the "pivot" index of this arr ...

  3. [LeetCode] 787. Cheapest Flights Within K Stops_Medium tag: Dynamic Programming, BFS, Heap

    There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...

  4. Mr Cao 的提问

    block调用时,变量的生命周期有哪几种?分别是什么样的? 98.CALayer的多个sublaye的数据结构,以及重绘顺序? 99.网路请求的超时及重试机制应该如何设计? 100.NSDiction ...

  5. python -- 解决If using all scalar values, you must pass an index问题

    [问题描述] 在将dict转为DataFrame时会报错:If using all scalar values, you must pass an index 例如: summary = pd.Dat ...

  6. python图片处理(一)

    python图片处理需要先在cmd里面安装Pillow pip install Pillow 一.图片的打开与显示 from PIL import Image img=Image.open('d:/d ...

  7. js数组之有已有数组创建新的数组

    concat()和splice()方法允许通过已经有的数组创建新的数组 concat()这个方法可以合并多个数组创建一个数组 splice()这个方法是获得截取一个数组中的子集创建一个新的数组. 理论 ...

  8. mysql buffer

    php与mysql的连接有三种方式,mysql,mysqli,pdo.不管使用哪种方式进行连接,都有使用buffer和不使用buffer的区别. 什么叫使用buffer和不使用buffer呢? 客户端 ...

  9. UVM中的regmodel建模(一)

    UVM中的regmodel继承自VMM的RAL(Register Abstract Layer),现在可以先将寄存器模型进行XML建模,再通过Synopsys 家的工具ralgen来直接生成regmo ...

  10. suiyi

    <?php namespace app\controllers; use Yii;use app\models\Device;use app\models\DeviceSearch;use ap ...