使用JetBrains的DotPeek工具能够方便地查看.net的部分源代码。于是看了一下.NET的内部是怎样实现排序的算法。

在System.Collections.Generic 命名空间下能够看到ArraySortHelper<T>的实现。

public void Sort(T[] keys, int index, int length, IComparer<T> comparer)
{
try
{
if (comparer == null)
comparer = (IComparer<T>) Comparer<T>.Default;
if (BinaryCompatibility.TargetsAtLeast_Desktop_V4_5)
ArraySortHelper<T>.IntrospectiveSort(keys, index, length, comparer);
else
ArraySortHelper<T>.DepthLimitedQuickSort(keys, index, length + index - 1, comparer, 32);
}
catch (IndexOutOfRangeException ex)
{
IntrospectiveSortUtilities.ThrowOrIgnoreBadComparer((object) comparer);
}
catch (Exception ex)
{
throw new InvalidOperationException(Environment.GetResourceString("InvalidOperation_IComparerFailed"), ex);
}
}

发如今.NET4.5以上的版本号,開始使用一种叫做 Introspective Sort的排序方法。

 internal static void IntrospectiveSort(T[] keys, int left, int length, IComparer<T> comparer)
{
if (length < 2)
return;
ArraySortHelper<T>.IntroSort(keys, left, length + left - 1, 2 * IntrospectiveSortUtilities.FloorLog2(keys.Length), comparer);
} private static void IntroSort(T[] keys, int lo, int hi, int depthLimit, IComparer<T> comparer)
{
for (; hi > lo; {
int num;
hi = num - 1;
}
)
{
int num = hi - lo + 1;
if (num <= 16)
{
if (num == 1)
break;
if (num == 2)
{
ArraySortHelper<T>.SwapIfGreater(keys, comparer, lo, hi);
break;
}
else if (num == 3)
{
ArraySortHelper<T>.SwapIfGreater(keys, comparer, lo, hi - 1);
ArraySortHelper<T>.SwapIfGreater(keys, comparer, lo, hi);
ArraySortHelper<T>.SwapIfGreater(keys, comparer, hi - 1, hi);
break;
}
else
{
ArraySortHelper<T>.InsertionSort(keys, lo, hi, comparer);
break;
}
}
else if (depthLimit == 0)
{
ArraySortHelper<T>.Heapsort(keys, lo, hi, comparer);
break;
}
else
{
--depthLimit;
num = ArraySortHelper<T>.PickPivotAndPartition(keys, lo, hi, comparer);
ArraySortHelper<T>.IntroSort(keys, num + 1, hi, depthLimit, comparer);
}
}
} private static int PickPivotAndPartition(T[] keys, int lo, int hi, IComparer<T> comparer)
{
int index = lo + (hi - lo) / 2;
ArraySortHelper<T>.SwapIfGreater(keys, comparer, lo, index);
ArraySortHelper<T>.SwapIfGreater(keys, comparer, lo, hi);
ArraySortHelper<T>.SwapIfGreater(keys, comparer, index, hi);
T obj = keys[index];
ArraySortHelper<T>.Swap(keys, index, hi - 1);
int i = lo;
int j = hi - 1;
while (i < j)
{
do
;
while (comparer.Compare(keys[++i], obj) < 0);
do
;
while (comparer.Compare(obj, keys[--j]) < 0);
if (i < j)
ArraySortHelper<T>.Swap(keys, i, j);
else
break;
}
ArraySortHelper<T>.Swap(keys, i, hi - 1);
return i;
}

而.NET4.5下面使用的是还有一种排序的方案。

在排序的数字小于16个的时候,直接使用插入排序。

private static void InsertionSort(T[] keys, int lo, int hi, IComparer<T> comparer)
{
for (int index1 = lo; index1 < hi; ++index1)
{
int index2 = index1;
T x;
for (x = keys[index1 + 1]; index2 >= lo && comparer.Compare(x, keys[index2]) < 0; --index2)
keys[index2 + 1] = keys[index2];
keys[index2 + 1] = x;
}
}

而假设大于16个的时候,且当递归深度在32次之内的话(也就是数字小于4GB的数量时),使用高速排序。

internal static void DepthLimitedQuickSort(T[] keys, int left, int right, IComparer<T> comparer, int depthLimit)
{
while (depthLimit != 0)
{
int index1 = left;
int index2 = right;
int index3 = index1 + (index2 - index1 >> 1);
ArraySortHelper<T>.SwapIfGreater(keys, comparer, index1, index3);
ArraySortHelper<T>.SwapIfGreater(keys, comparer, index1, index2);
ArraySortHelper<T>.SwapIfGreater(keys, comparer, index3, index2);
T obj1 = keys[index3];
do
{
while (comparer.Compare(keys[index1], obj1) < 0)
++index1;
while (comparer.Compare(obj1, keys[index2]) < 0)
--index2;
if (index1 <= index2)
{
if (index1 < index2)
{
T obj2 = keys[index1];
keys[index1] = keys[index2];
keys[index2] = obj2;
}
++index1;
--index2;
}
else
break;
}
while (index1 <= index2);
--depthLimit;
if (index2 - left <= right - index1)
{
if (left < index2)
ArraySortHelper<T>.DepthLimitedQuickSort(keys, left, index2, comparer, depthLimit);
left = index1;
}
else
{
if (index1 < right)
ArraySortHelper<T>.DepthLimitedQuickSort(keys, index1, right, comparer, depthLimit);
right = index2;
}
if (left >= right)
return;
}
ArraySortHelper<T>.Heapsort(keys, left, right, comparer);
}

而假设大于4GB的数量时,使用堆排序。

private static void Heapsort(T[] keys, int lo, int hi, IComparer<T> comparer)
{
int n = hi - lo + 1;
for (int i = n / 2; i >= 1; --i)
ArraySortHelper<T>.DownHeap(keys, i, n, lo, comparer);
for (int index = n; index > 1; --index)
{
ArraySortHelper<T>.Swap(keys, lo, lo + index - 1);
ArraySortHelper<T>.DownHeap(keys, 1, index - 1, lo, comparer);
}
} private static void DownHeap(T[] keys, int i, int n, int lo, IComparer<T> comparer)
{
T x = keys[lo + i - 1];
for (; i <= n / 2; {
int num;
i = num;
}
)
{
num = 2 * i;
if (num < n && comparer.Compare(keys[lo + num - 1], keys[lo + num]) < 0)
++num;
if (comparer.Compare(x, keys[lo + num - 1]) < 0)
keys[lo + i - 1] = keys[lo + num - 1];
else
break;
}
keys[lo + i - 1] = x;
}

最后,附上swap函数的实现:

private static void SwapIfGreater(T[] keys, IComparer<T> comparer, int a, int b)
{
if (a == b || comparer.Compare(keys[a], keys[b]) <= 0)
return;
T obj = keys[a];
keys[a] = keys[b];
keys[b] = obj;
} private static void Swap(T[] a, int i, int j)
{
if (i == j)
return;
T obj = a[i];
a[i] = a[j];
a[j] = obj;
}

.NET源代码的内部排序实现的更多相关文章

  1. 七种机器内部排序的原理与C语言实现,并计算它们的比较次数与移动次数。

    内部排序是指待排序列完全存放在内存中所进行的排序过程,适合不太大的元素序列. 排序是计算机程序设计中的一种重要操作,其功能是对一个数据元素集合或序列重新排列成一个按数据元素某个相知有序的序列.排序分为 ...

  2. 七内部排序算法汇总(插入排序、Shell排序、冒泡排序、请选择类别、、高速分拣合并排序、堆排序)

    写在前面: 排序是计算机程序设计中的一种重要操作,它的功能是将一个数据元素的随意序列,又一次排列成一个按keyword有序的序列.因此排序掌握各种排序算法很重要. 对以下介绍的各个排序,我们假定全部排 ...

  3. C++ 内部排序(一)

    先讲两个概念,所谓内部排序,指待排序的节点均存储在内存中.所谓排序的稳定性,指排序后,值相等的两个元素原来相对的位置是否发生变化了.举个例子. 待排序列:3(1),1,5,3(2)  稳定排序:1,3 ...

  4. 排序算法练习--JAVA(:内部排序:插入、选择、冒泡、快速排序)

    排序算法是数据结构中的经典算法知识点,也是笔试面试中经常考察的问题,平常学的不扎实笔试时候容易出洋相,回来恶补,尤其是碰到递归很可能被问到怎么用非递归实现... 内部排序: 插入排序:直接插入排序 选 ...

  5. 内部排序->其它->地址排序(地址重排算法)

    文字描述 当每个记录所占空间较多,即每个记录存放的除关键字外的附加信息太大时,移动记录的时间耗费太大.此时,就可以像表插入排序.链式基数排序,以修改指针代替移动记录.但是有的排序方法,如快速排序和堆排 ...

  6. 内部排序->基数排序->链式基数排序

    文字描述 基数排序是和前面各类排序方法完全不相同,前面几篇文章介绍的排序算法的实现主要是通过关键字间的比较和移动记录这两种操作,而实现基数排序不需要进行记录关键字间的比较.基数排序是一种借助多关键字排 ...

  7. 内部排序->归并排序->2-路归并排序

    文字描述 假设初始序列有n个记录,则可看成是n个有序的字序列,每个字序列的长度为1,然后两两归并,得到[n/2]个长度为2或1的有序子序列:再两两归并,…, 如此重复,直到得到一个长度为n的有序序列为 ...

  8. 内部排序比较(Java版)

    内部排序比较(Java版) 2017-06-21 目录 1 三种基本排序算法1.1 插入排序1.2 交换排序(冒泡)1.3 选择排序(简单)2 比较3 补充3.1 快速排序3.2 什么是桶排序3.3 ...

  9. Java实现各种内部排序算法

    数据结构中常见的内部排序算法: 插入排序:直接插入排序.折半插入排序.希尔排序 交换排序:冒泡排序.快速排序 选择排序:简单选择排序.堆排序 归并排序.基数排序.计数排序 直接插入排序: 思想:每次将 ...

随机推荐

  1. 开玩笑html5(五岁以下儿童)---绕地球月球,地球绕太阳运动(canvas实现,同样可以移动哦)

    请珍惜劳动小编成果,这篇文章是原来小编,转载请注明出处. 速度的參数与真实速度有点差距.大家能够自行调整 <!DOCTYPE html> <html> <head> ...

  2. HTML DOM nodeName nodeValue

    在javascript在,我们得title在标签和文本,它们通常要求这样做 var obj =document.getElementsById("id1"); obj.nodeNa ...

  3. 模拟Vue之数据驱动3

    一.前言 在"模拟Vue之数据驱动2"中,我们实现了个Observer构造函数,通过它可以达到监听已有数据data中的所有属性. 但,倘若我们想在某个对象中,新增某个属性呢? 如下 ...

  4. 实现BUG自动检测 - ASP.NET Core依赖注入

    我个人比较懒,能自动做的事绝不手动做,最近在用ASP.NET Core写一个项目,过程中会积累一些方便的工具类或框架,分享出来欢迎大家点评. 如果以后有时间的话,我打算写一个系列的[实现BUG自动检测 ...

  5. Windows命令行命令集锦

    原文:Windows命令行命令集锦 转自:http://www.me2wg.com/bbs/forum.php?mod=viewthread&tid=15830 winver--------- ...

  6. linux处置服务Iptables

    一:Iptables防火墙服务 iptables分为两个部分:一个部分在内核中实现,一个为用户接口命令iptables,用户通过该命令来改动防火墙的功能.所以,iptables要使用对应的功能.必需要 ...

  7. STL源代码分析--迭代摘要、迭代器失效汇总

    Vector 1.内部数据结构:连续存储,比如数组. 2.随机訪问每一个元素,所须要的时间为常量. 3.在末尾添加或删除元素所需时间与元素数目无关,在中间或开头添加或删除元素所需时间随元素数目呈线性变 ...

  8. js之第三方工具解析JSON

    1.JSON 仅仅是一种文本字符串.它被存储在 responseText 属性中 为了读取存储在 responseText 属性中的 JSON 数据,须要依据 JavaScript 的 eval 函数 ...

  9. cocos2d 简单的日常高仿酷跑游戏

    1.第一个直接看看这个游戏看起来视频(GIF我们不能满足游戏展) 跑酷游戏最纠结的是地图.碰撞倒是简单,能够自己写或者使用box2d等物理引擎.跑酷游戏地图的特点就是随机性.可是随机中又有策划特意安排 ...

  10. Android Volley 之自己定义Request

    转载标明出处:http://blog.csdn.net/lmj623565791/article/details/24589837 今天群里一哥们须要自己定义Volley的Request的样例,于是产 ...