C. Coloring Trees

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered with integers from 1 to n from left to right.

Initially, tree i has color ci. ZS the Coder and Chris the Baboon recognizes only m different colors, so 0 ≤ ci ≤ m, where ci = 0 means that tree i is uncolored.

ZS the Coder and Chris the Baboon decides to color only the uncolored trees, i.e. the trees with ci = 0. They can color each of them them in any of the m colors from 1 to m. Coloring the i-th tree with color j requires exactly pi, jlitres of paint.

The two friends define the beauty of a coloring of the trees as the minimum number of contiguous groups (each group contains some subsegment of trees) you can split all the n trees into so that each group contains trees of the same color. For example, if the colors of the trees from left to right are 2, 1, 1, 1, 3, 2, 2, 3, 1, 3, the beauty of the coloring is 7, since we can partition the trees into 7 contiguous groups of the same color :{2}, {1, 1, 1}, {3}, {2, 2}, {3}, {1}, {3}.

ZS the Coder and Chris the Baboon wants to color all uncolored trees so that the beauty of the coloring is exactly k. They need your help to determine the minimum amount of paint (in litres) needed to finish the job.

Please note that the friends can't color the trees that are already colored.

Input

The first line contains three integers, nm and k (1 ≤ k ≤ n ≤ 100, 1 ≤ m ≤ 100) — the number of trees, number of colors and beauty of the resulting coloring respectively.

The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ m), the initial colors of the trees. ci equals to 0 if the tree number i is uncolored, otherwise the i-th tree has color ci.

Then n lines follow. Each of them contains m integers. The j-th number on the i-th of them line denotes pi, j(1 ≤ pi, j ≤ 109) — the amount of litres the friends need to color i-th tree with color jpi, j's are specified even for the initially colored trees, but such trees still can't be colored.

Output

Print a single integer, the minimum amount of paint needed to color the trees. If there are no valid tree colorings of beauty k, print  - 1.

Examples
input
3 2 2
0 0 0
1 2
3 4
5 6
output
10
input
3 2 2
2 1 2
1 3
2 4
3 5
output
-1
input
3 2 2
2 0 0
1 3
2 4
3 5
output
5
input
3 2 3
2 1 2
1 3
2 4
3 5
output
0
Note

In the first sample case, coloring the trees with colors 2, 1, 1 minimizes the amount of paint used, which equals to2 + 3 + 5 = 10. Note that 1, 1, 1 would not be valid because the beauty of such coloring equals to 1 ({1, 1, 1} is a way to group the trees into a single group of the same color).

In the second sample case, all the trees are colored, but the beauty of the coloring is 3, so there is no valid coloring, and the answer is  - 1.

In the last sample case, all the trees are colored and the beauty of the coloring matches k, so no paint is used and the answer is 0.

比赛时这题虽没AC,但是写出来的代码的思想和题解一样,感觉很欣慰,DP开始入门了。

dp[i][j][k],i表示当前第i位,j表示当前颜色,k表示当前种类。

考虑当前第i位,若这一位已填颜色,则考虑dp[i-1][][],讨论一下前面和现在颜色是否相同。

若未填颜色,则j从1枚举到m的颜色,k也从1枚举到K.考虑前一位是否相同即可。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const ll inf = 0x3f3f3f3f3f3f3f3f;
const int maxn = ;
ll dp[maxn][maxn][maxn];
int c[maxn];
int col[maxn][maxn];
int main()
{
int n,m,k;
cin>>n>>m>>k;
for(int i=;i<=n;i++) scanf("%d",&c[i]);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
scanf("%d",&col[i][j]);
}
}
memset(dp,inf,sizeof(dp));
if(c[]) dp[][c[]][] = ;
else
{
for(int j=;j<=m;j++) dp[][j][] = col[][j];
}
for(int i=;i<=n;i++)
{
if(c[i])
{
for(int p=;p<=k;p++)
{
dp[i][c[i]][p] = min(dp[i][c[i]][p],dp[i-][c[i]][p]);
for(int q=;q<=m;q++)
{
if(q!=c[i]) dp[i][c[i]][p] = min(dp[i][c[i]][p],dp[i-][q][p-]);
}
}
}
else
{
for(int p=;p<=m;p++)
{
for(int q=;q<=k;q++)
{
dp[i][p][q] = min(dp[i][p][q],dp[i-][p][q]+col[i][p]);
for(int la=;la<=m;la++)
{
if(p!=la) dp[i][p][q] = min(dp[i][p][q],dp[i-][la][q-]+col[i][p]);
}
}
}
}
}
ll ans = inf;
for(int j=;j<=m;j++)
{
ans = min(ans,dp[n][j][k]);
}
printf("%I64d\n",ans==inf?-:ans);
return ;
}

Codeforces Round #369 (Div. 2) C. Coloring Trees (DP)的更多相关文章

  1. Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)

    Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...

  2. Codeforces Round #369 (Div. 2) C. Coloring Trees(简单dp)

    题目:https://codeforces.com/problemset/problem/711/C 题意:给你n,m,k,代表n个数的序列,有m种颜色可以涂,0代表未涂颜色,其他代表已经涂好了,连着 ...

  3. Codeforces Round #367 (Div. 2) C. Hard problem(DP)

    Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...

  4. Codeforces Round #369 (Div. 2) C. Coloring Trees 动态规划

    C. Coloring Trees 题目连接: http://www.codeforces.com/contest/711/problem/C Description ZS the Coder and ...

  5. Codeforces Round #369 (Div. 2) C. Coloring Trees DP

    C. Coloring Trees   ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...

  6. Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)

    题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...

  7. Codeforces Round #369 (Div. 2)-C Coloring Trees

    题目大意:有n个点,由m种颜料,有些点没有涂色,有些点已经涂色了,告诉你每个点涂m种颜色的价格分别是多少, 让你求将这n个点分成k段最少需要多少钱. 思路:动态规划,我们另dp[ i ][ j ][ ...

  8. Codeforces Round #245 (Div. 1) B. Working out (dp)

    题目:http://codeforces.com/problemset/problem/429/B 第一个人初始位置在(1,1),他必须走到(n,m)只能往下或者往右 第二个人初始位置在(n,1),他 ...

  9. Codeforces Round #260 (Div. 1) 455 A. Boredom (DP)

    题目链接:http://codeforces.com/problemset/problem/455/A A. Boredom time limit per test 1 second memory l ...

随机推荐

  1. time_t

    所在的头文件为 time.h 定义为: #ifndef __TIME_T #define __TIME_T     /* 避免重复定义 time_t */ typedef long     time_ ...

  2. VO , PO , BO , QO, DAO ,POJO

    VO , PO , BO , QO, DAO ,POJO, O/R Mapping 是 Object Relational Mapping (对象关系映射)的缩写.通俗点讲,就是将对象与关系数据库绑定 ...

  3. React和动态网站接口的经济学

    来自: React and the economics of dynamic web interfaces 自从2000开始我就一直在做web开发,曾见过很多以各种库和框架的起起落落,这些库和框架作为 ...

  4. perl的INC

    perl中的INC变量中包含了所有的perl module的查找路径. 查看@INC的值. 方式一: perl -V 方式二: % perl -e 'print join "\n" ...

  5. SmtpDlg 调用SMTP

    // SmtpDlg.h : 头文件 // #pragma once #include "afxwin.h" #include "string" using n ...

  6. think in uml 1

    对象,在过程的基础上,是一个抽象级别的提升,可以构建更大更复杂的系统 数据流图(Data Flow Diagram):简称DFD,它从数据传递和加工角度,以图形方式来表达系统的逻辑功能.数据在系统内部 ...

  7. Setup a private http/nginx based GIT server

    原文:http://aaba.me/blog/2014/03/setup-a-private-http-nginx-based-git-server.html https://doomzhou.git ...

  8. 【0-1 背包模板】 poj 3624

    先看个未经优化的二维空间dp: #include <iostream> #include <cstdio> #include <cmath> #include &l ...

  9. java代码用dom4j解析xml文件的简单操作

    时间: 2016/02/17 目标:为telenor的ALU Femto接口写一个采集xml文件并解析出locationName标签里的值,然后更新到数据库中. 从网上搜了下,有四种常用的解析xml的 ...

  10. 好的 小图标 html

    只需引用样式,加入字体文件到项目中就可实现 <link href="css/font-awesome.min.css" rel="stylesheet"& ...